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A Neural Network

A.1 Network Structure

The dimension of all layers in our model is shown in three tables. The structure of data encoder, condition encoder
and decoder are respectively shown in Table. 1, Table. 2 and Table. 3. The dimension of the input sequence is
50 x 4. The length of the sequence is 50 and for each timestamp, there is one data array (z1, y1, Z2, y2).

Table 1: Structure of Data Encoder

Description Output dimension
Sequence 1 (x1,y1) | Sequence 2 (1, y1) 50 x 2,50 x 2
Concatenated sequence (x1, y1, T2, y2) 50 x 4
Input layer (MLP) 4 x 64
ReLU -
RNN Encoder (GRU) 1x 128
Linear Encoder 128 x 20
z (mean) \ z (logvar) 1x32,1x32

Table 2: Structure of Condition Encoder

Description Output dimension
Input image 1 x 128 x 128
Convolution Layer 1 (kernel size: 3 x 3) 16 x 64 x 64
ReLU B
Convolution Layer 2 (kernel size: 3 x 3) 32 x 32 x 32
ReLU _
Convolution Layer 3 (kernel size: 3 x 3) 64 x 16 x 16
ReLU B
Convolution Layer 4 (kernel size: 3 x 3) 64 x 8 x 8
ReLU B
Lincar Layer 1 Linear Layer 1 (logvar) || 1 x 256,1 x 256
(mean)
Linear Layer 2 (mean) | Linear Layer 2 (logvar) 1x32,1x32
y (mean) y (logvar) 1x32,1x32

A.2 Training Details

We use Pytorch! to implement our framework and all models are trained on a NVIDIA RTX2080Ti GPU. The
training loss consists of three parts: KL divergence, reconstruction loss, and fusion loss. All of them are displayed
in Fig .1 as well as the total loss. All hyper-parameters in our experiments are listed in Table. 4.

Ihttps://pytorch.org



Table 3: Structure of Decoder

Description

Output dimension

7z (shared) z (shared) 1x32,1x32
Hidden layer (Linear) Hidden layer (Linear) 1 x256,1 x 256
ReLU -
Hidden2StartPoint Layer (Linear) | Hidden2StartPoint Layer (Linear) 1x32,1x32
ReLU -
Start point 1 Start point 2 1x2,1x2
Input layer (MLP) Input layer (Linear) 1x32,1x32
ReLU -
Concatenate Concatenate 1x64,1x 64
RNN Decoder 1 (GRU) RNN Decoder 2 (GRU) 1 x 256,1 x 256
Linear Decoder 1 Linear Decoder 2 1x2,1x2
Ponit 1 Ponit 2 1x2/1x2
Collector Collector 50 x 2,50 x 2

A.3 Baseline Details

We use MTG [1] as our first baseline, whose structure can be found in the supplementary material of [1]. We trained
this model with both the original dataset and collision dataset. The second baseline we used is the perturbation
method proposed in [2], which fixes the start and end points and adds perturbation to the mid point. The disturbance

is uniformly at random in the range [—0.5,0.5] meters in both axes.
We use three trajectory prediction methods in our experiments:

e Vanilla-LSTM: we implement a simple seq2seq structure to predict the future trajectory and use MSE as the

loss function.

e Social-LSTM: we modify the data loader part in this code repo?.

e CS-LSTM: we modify the data loader part in this code repo>.

Table 4: Hyper-parameters of our model

Description

learning rate

batch size

weight of reconstruction error

weight of KL divergence

weight of fusion loss

dimension of the latent code

dimension of the road map image

observe length in trajectory prediction

Notation || Value
Ir 0.001
B 512
« 1
Jé] 0.5
Y 0.1
Zdim 32
Cdim 128
Olen 20
Ag 0.3

interpolating parameter in generating stage

B Dataset Generation Settings

B.1 Collision Dataset Generating Rules

We generated the collision dataset from the original dataset with simple rules. There are two sequences in one data
sample, representing two vehicles. Firstly, we randomly select a collision point in sequence 1 and then translate
sequence 2 to make sure that these two sequences have a collision on the pre-defined point, which means the index

2https://github.com/quancore/social-1stm
Shttps://github.com/nachiket92/conv-social-pooling
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Figure 1: Training loss of our CMTS.

of the point should be the same for both sequences. Secondly, we randomly rotate sequence 2 until all points in
sequence 2 satisfy the road constraint.

B.2

Risky Scenarios Design Rules

Based on experience in real traffic, we design 6 risky scenarios, the first 3 of which are more likely to happen to
daily life and the rest 3 are more fatal to the traffic participations. The descriptions of these 6 scenarios are as
follow (V1 is the ego vehicle, V1 is the short of vehicle 1 and V2 is the short of vehicle 2):

V1 is driving on a lane, while V2 is driving in the same direction on a neighbor lane. V2 suddenly cuts in line
in front of V1. If a human driver encounters this situation, he will slow down to avoid a collision.

V1 and V2 are driving on the same lane and V2 is in front of V1. Both vehicles are driving fast while
V2 suddenly slows down. If a human driver encounters this situation, he will also slow down to avoid a
rear-end-collision.

V1 is going straight to an intersection and V2 is going to turn right. When the road is narrow, these two
vehicles are very likely to have a collision if V1 does not change to the left lane.

V1 is driving on a lane, while V2 is driving in the opposite direction. Due to some unknown reason, V2 rushes
to the opposite lane towards to V1. Although this is a very risky situation and rarely happens in real life, a
reasonable response for V1 is turning left and slow down.

V1 is driving in the middle of an intersection, while V2 breaks the red light and drives towards V1.

V1 is turning left in an intersection, while V2 breaks the red light and drives towards V1.

Although these examples cannot cover all risky scenarios, they indeed give some demonstrations of near-miss
scenarios that is rarely included in real-life dataset. It is because of this, that we propose to automatically generate
these risky scenarios.

C

More Experiment results

More results of trajectory prediction in risky scenarios are shown in Fig. 2.
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Figure 2: Trajectory prediction results in 6 risky scenarios with CS-LSTM [3]. Red points and green points represent
the history and predicted trajectory, respectively. Bigger green points are last predictions.
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