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Abstract
Training and evaluating autonomous robots within the real world present sig-

nificant challenges and risks, emanating from unpredictable environments, safety

concerns, ethical dilemmas, and limited human oversight. As a mitigation strategy,

the use of realistic simulations, also known as digital twins, offers virtual duplication

of the actual system or environment, thus fostering the development of trustworthy

autonomy.

Digital twins enable developers to evaluate the performance of systems in various

scenarios to identify potential risks or failure cases. It facilitates the accumulation

and subsequent analysis of datasets, which serve to validate and calibrate the au-

tonomous system’s perception and decision-making algorithms. By comparing the

behavior of the digital twin with real-world data, developers can identify discrepan-

cies, improve accuracy, and enhance the system’s safety and reliability.

Scenarios that embody dynamic and interactive components reflect the intrica-

cies of digital twins and take precedence in significance. One main value of digital

twins is helping us understand how objects interact and behave. For example, in

autonomous driving, the behavior of vehicles, pedestrians, and traffic conditions are

crucial components of scenarios that need to be accurately modeled. However, not

all scenarios in digital twins are created equal. In the pursuit of developing trustwor-

thy autonomy, ordinary scenarios often prove insufficient in subjecting autonomous

systems to extreme conditions where safety and robustness are paramount. Although

critical scenarios hold the potential to expose model vulnerabilities, their rare occur-

rence creates a challenge. The process of manually identifying or extrapolating such

critical scenarios from normal data or expert design proves not only inefficient but

also contains substantial human biases.

My doctoral research seeks to harness the potential of generative AI to explore

two pivotal questions: (1) Which scenarios are critical in existing data and (2) How

to generate such scenarios in digital twins? The proposal begins with the definition

of critical scenarios and the corresponding optimization problem and subsequently

delves into three distinct categories of scenario generation frameworks: data-driven
generative models, adversarial generative models, and knowledge-guided gen-
erative models. Concluding this thesis is future directions that effectively combine

generation resources from different perspectives and improve the data flywheel.
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Chapter 1

Introduction

What I cannot create, I do not understand

Richard Feynman

Artificial intelligence (AI) has seen substantial breakthroughs in areas such as dialogue gen-

eration (OpenAI, 2023), image generation (Rombach et al., 2022), and embodied systems (Driess

et al., 2023). However, as AI progresses and research broadens to encompass physical products,

notably robotic systems, it becomes entangled with challenges relating to safety, robustness, and

open-ended environments with unforeseen events. Therefore, autonomous systems, although

ultimately deployed in the real world, are typically developed in the preliminary stages within

simulations due to the potential for costly damage and the slow operational pace of the physical

world. To bridge this gap and ensure a close approximation between simulations and reality,

digital twins (Wang et al., 2023) are designed to emulate the real world, using a high-quality,

precision-engineered physical and graphical renderer.

1.1 Digital Twins, Data, and Scenarios

There are many definitions of digital twins with slight differences. In this proposal, we broadly

describe digital twins as a virtual platform that can accurately simulate a process in real-world

tasks. These tasks are indispensable for human life, such as autonomous driving, medical treat-

ment, manufacturing, etc.

1



Figure 1.1: Illustration of digital with broad applications including healthcare, autonomous driv-

ing, energy, and manufacturing.

Regarding the fidelity of digital twins, initial perceptions often gravitate towards the detailed

textural models of static objects, such as human faces, or the accurate inner functioning of com-

plex objects like vehicle engines. However, the complex interaction between objects, which

underpins the formation of scenarios, represents a pivotal facet of fidelity. Scenarios, with mul-

titudinous object behaviors and inherent high dimensions of uncertainty, are complex in nature.

They provide diverse training and testing grounds for autonomous systems, and any disparity

between digital twin scenarios and real-world situations substantially influences system perfor-

mance.

However, the task of designing scenarios that are diverse, realistic, and efficient remains a

formidable challenge. The easiest approach to scenario design involves randomly sampling the

position and movement patterns of objects. Although simple, this method frequently results

in a surplus of invalid scenarios that contravene physical laws and basic principles, potentially

creating situations that may never occur in reality. A more sophisticated alternative involves us-

ing human experts to design scenarios manually, a process that is laborious and constrained by

the limitations of individual experience. To alleviate human effort, another approach involves

replaying the collected data within the digital twin. However, such datasets are typically dom-

inated by redundant scenarios, which primarily serve to test autonomous system performance

under rudimentary scenarios.

So, what do critical scenarios encompass? First, these scenarios must encapsulate all real-

world cases, including rare events with extremely low probability of occurrence. Second, the
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categorization and parameters of the scenario should be readily controllable by users to satisfy

all kinds of situations. Third, the search process for the desired scenario must be efficient. With

the advent of advanced AI tools, especially deep generative models, it is now possible to design

potent algorithms that can fulfill these requirements. In addition, these algorithms leverage the

capabilities of digital twins to facilitate the learning process.

1.2 Critical Digital Twins

Before introducing details of scenario generation, we first provide a definition of critical digital

twins, which means critical scenarios in digital twins. then we discuss the objective and metrics

that are used in the generation of critical scenarios. Finally, a thorough review of the literature of

related works concludes this chapter.

1.2.1 Components

To describe the environment in which the autonomy operates, we define a scenario with static

and dynamic contents and also consider the behavior of dynamic objects. Formally, we have the

following definition:

Definition 1 (Scenario in Digital Twin). The scenario is defined as a combination of three sets:

x ∈ X = {S, I,B}. S represents the static environment, including the map, surrounding build-

ings, etc. I represents the initial condition and properties of dynamic objects (called agents). B
represents the sequential behaviors of dynamic objects.

Figure 1.2: Compared to normal scenarios,

critical scenarios are rare in the real world.

Separating static and dynamic content im-

proves scenario representation and generation

and has shown great success in (Team et al.,

2021). The geometry of the map and the

static objects (e.g., traffic signs and traffic

lights) create the background of the scenario,

while the dynamic agents that participate in the

scenario enable complex interaction between

3



agents. Among all these dynamic agents, we are usually interested in a specific agent, named

ego agent, that is controlled by an algorithm to be trained or evaluated:

Definition 2 (Ego agent in Scenario). The ego agent, denoted as Ae, is controlled by an algo-

rithm provided by the user for training and evaluation.

With the target agent Ae, we can use different metrics to describe and categorize scenarios,

according to different downstream tasks. For example, in autonomous driving scenarios, we care

about the safety of the ego vehicle, thus we can use the safety level of the scenario to define a

safety-critical scenario:

Definition 3 (Critical Scenario). Given an evaluation metric g(x) and a predefined threshold δ

in the range of this metric, a critical scenario is defined as {x : g(x) > δ}.

We can then create critical scenarios in digital twins to make the ego agent operate under

stressful conditions to evaluate the performance or find failure cases. However, designing such

scenarios is not an easy task, as they have hierarchical structures and complicated components.

To generate valid scenarios that satisfy the metric requirement g(x) > δ, we need to use opti-

mization methods.

1.2.2 Objective of Generation

Based on the definition of critical scenarios, we can model the generation process as an optimiza-

tion problem to learn a distribution pθ(x) with the objective:

argmax
θ

= Epθ(x) [g(x)] , (1.1)

where θ is the parameter of distribution pθ(x) to be optimized.

Usually, the evaluation metric g(x) involves a complex interaction between the ego agent

and other components of the scenario. Therefore, we introduce the concept of action and policy

to describe the dynamic behavior of all agents. For the ego agent, we define the ego action

ate = πe(x
t) that is generated by the ego policy πe given xt, the historical states before timestep

t. Similarly, we define the action for other agents as ato = πo(x
t). Then, we can expand the
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objective of generation with the behavior of all others as:

argmax
θ

= Epθ(x) [g(x, πe, πo)] . (1.2)

1.2.3 Metrics

The most important factor in solving the optimization problem Definition 1.2 is the metric g(x).

A proper risk metric makes the generated scenarios useful for discovering failure cases of the ego

agent, while an improper risk metric only provides useless scenarios that either are too trivial for

systems or too rare to happen in the real world.

One typical category of such a metric is safety-critical metrics that describe the level of

risk or probability of unsafe events, for example, collisions, and reaching limitation of systems.

In this physical world, the level of risk can be naturally described by the distance – a small

distance means the risk of collision is high. This intuition can be described by Time-to-Collision

(TTC) (Hayward, 1972):

TTCF (t) =
XL(t)−XF (t)− lL
ẊF (t)− ẊL(t)

, ∀ ẊF (t) > ẊL(t), (1.3)

where X denotes the position, Ẋ denotes the derivative of X with respect to time or the speed,

and lL denotes the leading agents’s length; L and F as subscripts refer to leading and following

agents. Following this time-based metric, there are numerous variants of TTC such as Time

Exposed TTC (TET) (Minderhoud and Bovy, 2001) and Modified TTC (MTTC) (Ozbay et al.,

2008).

The other two main types of metrics are distance-based and deceleration-based metrics. The

first uses the distance available to avoid a collision, for example, the Proportion of Stopping

Distance (PSD) (Allen et al., 1978). The second one defines dangerous situations using the rate

deceleration during an emergency, e.g., Deceleration Rate to Avoid the Crash (DRAC) (Almqvist

et al., 1991). Please check (Mahmud et al., 2017) for more metrics that belong to these two types.

In addition, we can also use post-hoc analysis of unsafe behavior to indicate risk, for example,

the collision rate, the average distance driven out of the road, and the frequency of running stop
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signs and red lights (Li et al., 2021; Ros et al., 2022).

In addition to the safety-critical metrics, we can consider robustness-critical metrics that

evaluate performance under distribution shift (e.g., perturbation shift and spurious correlation),

privacy-critical metrics that evaluate information leakage under attacks, and equity metrics.

1.3 Literature of Generative Models in Digital Twins

The introduction of the related work starts with the representation of scenarios that fundamen-

tally influence the generative process. Then we discuss existing work from two optimization

frameworks, including rule-based generation and learning-based generation. Finally, we will

introduce critical scenario generation, which also includes work from different perspectives.

1.3.1 Representation of Scenario

Language and grammar of scenario. Similar to program language, there are also formal lan-

guage and grammar to describe scenarios, which provide a unified and standard way to generate

scenarios. OpenScenario from the Association for Standardization of Automation and Measuring

Systems (ASAM) is widely used around the world in both academic and industrial applications.

It describes complex, synchronized maneuvers that involve multiple entities, such as vehicles,

pedestrians, and other traffic participants. SCENIC (Fremont et al., 2019) is another language

designed for scenario generation, which contains fewer concepts than OpenScenario therefore,

but includes more features of probabilistic programming languages.

Tree and graph structure of scenario. Scene trees and scene graphs are also widely used to

represent static scenarios, which are good at capturing structural information. (Xiao et al., 2021a)

generates point cloud sequential datasets by minimizing the gap between real-world LiDAR and

simulation data. Similarly, Meta-sim (Kar et al., 2019) and Meta-Sim2 (Devaranjan et al., 2020)

try to minimize the sim-to-real gap to reconstruct traffic scenarios for automatic labeling. Their

main contribution is that they use a scene graph to represent the scenario, which is a hierarchical

structure that makes the generation more efficient. In (Savkin et al., 2021), the scene graph is

also used to generate image scenarios.
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Bayesian Networks. Bayesian Networks is a probabilistic graphical model that uses nodes

to represent objects and edges to represent the relation between nodes. This structured model can

naturally describe the objects in the scenario. (Wheeler et al., 2015) uses Dynamic Bayesian Net-

work (Ghahramani, 1997) to model complex traffic scenarios, and (Wheeler and Kochenderfer,

2016) uses factor graphs to model driving behaviors between multiple vehicles. In addition to

using dynamic Bayesian networks or factor graphs to model the structures of traffic participants,

the Gaussian process (GP) is a powerful non-parametric method to model the distribution of se-

quential scenarios (Huang et al., 2018b). Following this direction, (Guo et al., 2019b) combines

the GP and Dirichlet process to build a model with an infinite number of clusters to discover

traffic primitives (Wang and Zhao, 2018), which can be combined to create new scenarios.

1.3.2 Rule-based Scenario Generation

An intuitive way of generation is to sample from a collected dataset to reproduce the scenario

from the road test log. Such sampling could be augmented by clustering and random perturba-

tion. Moving one step forward, we can extract scenario templates from the dataset and use logic

to represent them. During generation, we can uniformly sample the important parameters in the

scenario templates.

Data replay. Most autonomous driving companies maintain scenario bases to store the sce-

narios they recognize as important (Webb et al., 2020). During this process, one crucial step is the

tools that can automatically convert the scenario from data to virtual simulations (van der Made

et al., 2015). Also, efficiently selecting the critical scenario from a huge number of scenarios

is another problem. (Knies and Diermeyer, 2020) extracts useful scenarios according to coop-

erative actions for the evaluation of cooperative maneuver planning. In (Arief et al., 2018), the

authors developed a method to select a testing site to accelerate the evaluation of the performance

of the AVs on public streets, where the main contribution is describing the risk intensities of the

traffic system in an area of interest with the non-homogeneous Poisson process model (Pham and

Zhang, 2003).

Clustering. To better categorize the collected scenario, (Kruber et al., 2018) and (Kruber

et al., 2019) propose to use unsupervised clustering methods to group similar scenarios, helping
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to improve the efficiency of AV testing in a specific type of scenario. However, clustering the

entire scenario might be inefficient and inaccurate, since the scenarios are usually complex and

composed of finite building blocks. In (Wang and Zhao, 2018), the concept of Traffic Primitive

to represent those blocks. They use the Hierarchical Dirichlet Process Hidden Markov Model

(HDP-HMM) (Fox et al., 2008), a nonparametric Bayesian learning method, to unsupervised

extract primitives from scenarios to better cluster similar scenarios. In (Wulfe et al., 2018),

Importance Sampling (IS) is used to sample driving scenarios represented by Bayesian Networks.

In (Wheeler and Kochenderfer, 2019), the authors try to find as many risky scenarios as possible

and cluster them. They first uniformly sample from the clusters and then use IS to sample the

specific scenarios represented by factor graphs.

Random perturbation. The main obstacle to direct conversion is that the diversity of sce-

narios is limited. Therefore, recent work by some leading companies has begun to use ran-

dom perturbation to increase the number of scenarios. Baidu creates a physical-based LiDAR

model (Fang et al., 2020) to transfer a dense point cloud to match the line-style output of the

LiDAR sensor. By randomly placing the computer-assisted design (CAD) model of vehicles and

pedestrians, their algorithms can generate a huge number of scenarios. Similarly, Uber builds a

more precise LiDAR model (Manivasagam et al., 2020) using neural networks (NN) to mimic

the reflection details of real-world sensors. In addition to the high-dimensional representation,

Waymo tries to reconstruct more fatal crashes from the collected data by randomly perturbing

important parameters (Scanlon et al., 2021).

Pre-defined logics. Driving scenarios are very common in daily life, thus we humans can

easily design scenarios with predefined rules and specific conditions to trigger events. (Rana

and Malhi, 2021) uses prior knowledge to design random risk scenarios with equations. The

authors also conduct interventional experiments by training RL agents in different scenarios

to get comparable results. (Menzel et al., 2018) focuses on functional and logical scenarios,

which can be represented by natural language from human experts. (Bagschik et al., 2018) views

ontologies as knowledge-based systems in the field of AV and proposes a generation of traffic

scenes in natural language as a basis for the creation of scenarios. In (Fremont et al., 2020), the

authors combine the formal specification (Lamsweerde, 2000) of scenarios and safety properties
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to generate test cases from formal simulation.

Platforms that support pre-defined logics. There are also a large number of works that

build the entire platform with predefined scenarios implemented. A 2D platform named SMARTS

is developed in (Zhou et al., 2020) containing multiple diverse behavior models using both rule-

based and learning-based models. (Li et al., 2021) proposes MetaDrive, a 3D simulator that

supports different road shapes defined by users or directly imported from existing real-world

datasets (e.g. Argoverse (Chang et al., 2019a)). (Ros et al., 2022) is a competition built on top of

CARLA (Dosovitskiy et al., 2017) and (Contributors, 2019), which consists of a large number

of pre-defined scenarios. In (drive Contributors, 2021), the authors build a rule-based scenario

zoo in CARLA (Dosovitskiy et al., 2017), which shares some similar scenarios with (Contribu-

tors, 2019). To manage complex traffic scenarios with hundreds of objects, SUMMIT (Cai et al.,

2020) is specifically designed for generating massive mixed traffic with an autopilot algorithm.

To explore the causality between vehicles in the scenario, CausalCity (McDuff et al., 2021) is

developed to evaluate causal discovery algorithms, which build an agency mechanism to define

high-level behaviors. Safebench (Xu et al., 2022) is a critical scenario library built on Carla,

which supports different types of critical scenario generation algorithms.

1.3.3 Learning-based Scenario Generation

Consider the scenarios following a distribution, we can use collected data to learn a density

model to approximate this distribution. We divide this type of algorithm into three categories

according to the density model that they use.

Deep Learning Models. Deep learning models are broadly introduced into generation in

(Tan et al., 2021) and (Wen et al., 2020). SceneGen (Tan et al., 2021) inputs the current state of

the AV and a high definition (HD) map to a Long Short Term Memory (LSTM) (Hochreiter and

Schmidhuber, 1997) module to sequentially generate the trajectory of surrounding vehicles and

pedestrians. They train their model with normal traffic data since their objective is to generate

naturalistic scenarios. (Wen et al., 2020) proposes a quite complex system to generate scenarios

in a simulator, which uses the Convolution Neural Network (CNN) (O’Shea and Nash, 2015) as

a selector to generate agents surrounding the AV. In TrafficSim (Suo et al., 2021), both Gated
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Recurrent Unit (GRU) and CNN are used to learn the behaviors of multi-agents from real-world

data. This method can generate realistic multi-agent traffic scenarios. TrafficGen (Feng et al.,

2023a), separates the generation of initial positions and vehicle movements, providing a more

flexible traffic model. Recently, the trend of using large language models (LLMs) for generation

has become popular. Both CTG++ (Zhong et al., 2023a) and LCTGen (Tan et al., 2023) use

language as conditions and use LLMs as an interpreter to guide the generative model to generate

the corresponding scenarios.

Deep Generative Models (DGMs). Recently, DGMs have shown great success in generat-

ing image and voice data. There are five types of modern generative models: Generative Ad-

versarial Nets (GAN) (Goodfellow et al., 2014), Variational Auto-encoder (VAE) (Kingma and

Welling, 2013), Autoregressive Models (Oord et al., 2016; Van Oord et al., 2016), Flow-based

model (Chen et al., 2018; Dinh et al., 2016), Diffusion model (Ho et al., 2020; Song et al., 2020).

The readers can find more details about DGMs in this survey (Harshvardhan et al., 2020). In

(Feng et al., 2022), an auto-encoder structure is designed to separately generate vehicle initial

positions and vehicle trajectories. With the power of VAE, (Ding et al., 2018) learns a latent

space of encounter trajectories and generates unseen scenarios by sampling the latent space.

However, with less understanding of the latent code, the generation is not controllable. As an

improvement, the authors of (Ding et al., 2020a) propose CMTS, which combines normal and

collision trajectories to generate safety-critical scenarios by performing interpolation in latent

space. Regarding the usage of GAN, (Håkansson and Wall, 2021) introduces recurrent models to

generate realistic scenarios of lane-change. They use real-world data in the discriminator to help

improve the generator. The advantage of DGMs is that they can learn a low-dimensional latent

space of high-dimensional and structured data using NNs. Therefore, we can easily generate

high-dimensional sensing scenarios. SurfelGAN is proposed in (Yang et al., 2020) to directly

generate point-cloud data to represent scenarios from the point of AV. (Chen et al., 2021b) can

add new vehicles to collected driving videos to generate realistic video scenarios, where they

also consider the motion planning of vehicles. (Ehrhardt et al., 2020) generates traffic videos

with multi-object scene synthesis using a GAN framework. To make the video realistic, they in-

tegrate physical conditions into the generation. In (Li et al., 2019), a scenario simulator driven by
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data is designed to generate both LiDAR and trajectory data to increase the diversity of driving

scenarios.

Adaptive Stress Testing. Finally, there is a series of works called Adaptive Stress Testing

(AST) that explores different ways of generating stress-testing scenarios. (Lee et al., 2015) uses

Monte Carlo tree search (MCTS) to search action of the testing scenario, but this method does

not target autonomous driving systems. (Koren et al., 2018) generates a scenario that controls a

pedestrian to cross the road. (Koren and Kochenderfer, 2019) improves the last paper by using

LSTM to generate initial conditions and actions at each step. Instead of defining heuristic reward

functions, (Koren and Kochenderfer, 2020) leverage the Go-Explore framework to find failure

cases. (Koren et al., 2021) extends previous work to high-fidelity simulation and changes the

learning algorithm to Proximal Policy Optimization (PPO) (Schulman et al., 2017).

Imitation learning. Another way to learn the distribution of the dataset is by using the

imitation learning (IL) method (Hussein et al., 2017), which takes the observation as input and

directly controls agents. IL training is the same as supervised learning. After training, the IL

model (Bojarski et al., 2016; Chen et al., 2019; Ho and Ermon, 2016) can reproduce the same

behavior as real-world agents when the model encounters the same observation. However, when

the observation is not covered by the dataset, the behavior of the model could be unreasonable

and unpredictable.

1.3.4 Critical Scenario Generation

All previous methods focus on general scenario generation to cover the normal and common

cases. However, generating normal data provides limited benefit as that part is already well-

covered by the real-world data. Therefore, some recent literature explores the topic of critical

data generation, especially from the adversarial learning perspective. Adversarial generative

models attack a given system to find the worst failure case, which to some extent is consistent

with critical scenario generation.

Importance sampling. A series of works on generating critical and rare scenarios in the con-

text of Importance Sampling (IS) also appear in the literature. (Zhao et al., 2015) uses heuristic

approaches to generate dangerous lane-changing scenarios. (Zhao et al., 2018, 2016) constructs
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IS distribution to sample dangerous AV lane-changing and car-following scenarios. (Wang et al.,

2019b) combines reachability analysis and IS to accelerate the evaluation. (Huang et al., 2017)

uses piece-wise models to design a more expressive IS distribution. (O’Kelly et al., 2018) ex-

tends the simulation of rare events using IS to end-to-end driving algorithms. (Huang et al.,

2018c) uses the Gaussian mixture model (GMM) for the IS distribution and further analyzes the

efficiency of the GMM-based IS distribution for random forest and NN classifiers (Huang et al.,

2018d). ReLU-activated NNs are considered in (Arief et al., 2020) to estimate the dangerous set

and compute an IS estimator for a risk upper bound for the Gaussian case, with a more general

case presented in (Arief et al., 2021a). The adaptive IS approach is used to construct adversarial

environments to accelerate policy evaluation (Xu et al., 2021b). (Sinha et al., 2020) proposes

Neural Bridge Sampling based on the adaptive multilevel splitting (Cérou and Guyader, 2007).

(Feng et al., 2023b) inject IS into the reinforcement learning framework to density the ratio of

safety-critical scenarios.

Adversarial generation of static scenarios. (Jain et al., 2019) learns the poses of vehicles

and uses a differentiable render to get the first-point-view images to attack object detection al-

gorithms. (Prakash et al., 2019) and (Khirodkar et al., 2018) extend Domain Randomization

methods (Tobin et al., 2017) to adversarial generation. (Prakash et al., 2019) proposes Structured

Domain Randomization, which uses a Bayesian network to actively generate vehicle poses. (Khi-

rodkar et al., 2018) proposes Adversarial Domain Randomization, which targets the parking lot

scenario. All of the above methods focus on image generation, but some works generate point

cloud scenarios. (Tu et al., 2020) puts an adversarial object on the top of a vehicle and opti-

mizes the shape of the object to make the vehicle disappear in the LiDAR detection algorithms.

Similarly, (Abdelfattah et al., 2021) shares the same idea but uses both LiDAR and image infor-

mation. After optimizing the shape of the object, (Cao et al., 2019) uses 3D printing to build the

object in the real world. The experiment shows that the object on the road is indeed ignored by

the detection algorithms. In addition to using renderers, (Zhu et al., 2021) tries to directly add

new points to the existing point cloud to attack segmentation algorithms.

Adversarial generation of initial condition in dynamic scenarios. The first type is control-

ling the initial conditions of the scenario (e.g., initial velocity and spawn position) or providing

12



the entire trajectory at the beginning. The advantage is the low dimension of search space and the

small computational resource required. (Ghodsi et al., 2021) generates a set of possible driving

paths and identifies all possible safe driving trajectories that can be taken starting at different

times. Similarly, (Wang et al., 2021a) and (Hanselmann et al., 2022) directly optimize the ex-

isting trajectories to perturb the driving paths of the surrounding vehicles. They use Bayesian

Optimization (Frazier, 2018) for the optimization, and the scenario is represented with a point

cloud. To generate real-world traffic scenarios, (Rempe et al., 2022) optimizes the adversarial

trajectory in the latent space of a VAE model. Besides controlling the dynamic objects, some

work also focuses on searching the weather parameters (e.g., sun and rain) to create different

scenarios. (Ruiz et al., 2018) searches the type of weather using the REINFORCE (Williams,

1992) algorithm. (O’Kelly et al., 2018) uses Generative Adversarial Imitation Learning (Ho and

Ermon, 2016) to generate weather parameters and uses the cross-entropy method for efficient

scenario search.

Adversarial generation of policy in dynamic scenarios. The second type is building a

policy model to sequentially control the dynamic objects, which contains the largest number of

existing works. This type is usually formulated as a Reinforcement Learning (RL) problem (Sut-

ton and Barto, 2018), where the AV belongs to the environment and the generator is the agent

we can control. Intuitively, we have much more flexibility in this setting, but the complexity also

increases. Since the AV and objects in scenarios interact stepwise, this problem can be formu-

lated in an RL framework, and there are lots of works using RL methods. (Feng et al., 2021) and

(Sun et al., 2021) use Deep Q-Network to generate discrete adversarial traffic scenarios. (Kuutti

et al., 2020) uses Advantage Actor-Critic (A2C) (Mnih et al., 2016) to control a surrounding

vehicle in car-following scenarios. (Chen et al., 2021a) uses Deep Deterministic Policy Gradient

(DDPG) (Lillicrap et al., 2015) to generate adversarial policy to control surrounding agents to

generate lane-changing scenarios. (Wachi, 2019) uses Multi-agent DDPG (Lowe et al., 2017)

to control two surrounding vehicles (which are called Non-player Characters) to attack the ego

vehicle. This method also sets auxiliary goals for non-player characters (NPC) to avoid generat-

ing unrealistic scenarios. (Nonnengart et al., 2019) proposes CriSGen that uses constraint-based

optimization and (Abeysirigoonawardena et al., 2019) uses Bayesian optimization.
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Constraint optimization Another way of using explicit knowledge is resorting to the con-

straint optimization framework. We know that safety-critical scenarios are extremely rare in

the real-world log, and random augmentation could be inefficient in generating safety-critical

scenarios. One of the heuristic risk metrics is the drivable area for the autonomous vehicle.

(Klischat and Althoff, 2019) and (Althoff and Lutz, 2018) minimize the drivable area by control-

ling the surrounding vehicles with an evolutionary method and constraint optimization methods,

respectively. To explore more different types of scenarios, (Rocklage et al., 2017) generates the

motion of other traffic participants with a backtracking search. To make the scenarios diverse,

(Klischat et al., 2020) build a pipeline that introduces the road topology of OpenStreetMap (Ben-

nett, 2010). Using the safety-critical scenarios from (Klischat et al., 2020), (Wang et al., 2021c)

designs a comprehensive open-source toolbox to train and evaluate RL motion planners for AVs

with user-customized configuration. To obtain a robust trajectory prediction model, (Zhang et al.,

2022) and (Cao et al., 2022) generate adversarial trajectory by perturbing existing trajectory with

feasible constraints.

1.3.5 Dataset and Tools for Scenario Generation

In this section, we introduce the tools that are useful for safety-critical scenario generation. We

first discuss the scenario datasets, then turn to the traffic simulators. Finally, we review existing

platforms that support the function of scenario generation.

Scenario Dataset

For modern machine learning methods, datasets are crucial and necessary. Specifically, for the

scenario generation task, there are also many datasets published by companies and academic

institutes. In Table 1.1, we summarize and compare existing scenario datasets in various aspects

that we are especially interested in.

Fidelity. In Table 1.1, we include datasets that are collected from sensors on public roads

and virtual worlds simulated by traffic simulators. Collecting real-world data is time-consuming

and requires humans to operate vehicles or drones to record data in the real world in a variety of

environments. However, these data are more representative of the real-world data distribution.
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Models developed with these realistic data can be applied directly to the real world. Synthetic

datasets, on the other hand, are simple to collect. However, they are highly dependent on the

authenticity of traffic simulators, which usually do not accurately mimic and render real-world

data.

Collect View. In addition to different levels of reality, we also present datasets with dif-

ferent views. For example, the HighD (Krajewski et al., 2018), InD (Bock et al., 2020), and

RounD (Krajewski et al., 2020) datasets collect data in bird’s-eye view (BEV), which is recorded

from drone cameras. KITTI (Geiger et al., 2013) and Argoverse (Wilson et al., 2023) datasets

collect data in first-person view (FPV), which are captured by cameras in front of a car. The BEV

data are collected in a fixed region; therefore, it is more useful to analyze the behavior of objects

on a fixed background. In contrast, FPV data are more suitable for training AV algorithms that

take egocentric information.

Data Sensor. For each dataset, we examine whether it has the following data types: RGB

image, stereo image, LiDAR data, Radar, and trajectory. All datasets included in the table have

RGB images since it is a common data type in traffic scenarios. RGB images are usually collected

by cameras mounted on vehicles or drones, and they can be utilized for a variety of computer

vision tasks, such as object detection and image segmentation. Stereo images are captured by

stereo cameras, and LiDAR data is collected by LiDAR sensors. Both provide 3D information

that is particularly useful in 3D tasks such as 3D object detection. RADAR is also a common

sensor that returns 3D information similar to that of LiDAR, but at a cheaper price. It can work in

harsher conditions (e.g., rain and storm) because of its longer wavelength compared to LiDAR’s

lights. The trajectory data are either recorded by sensors such as GPS or converted from object

tracking. This type of data is frequently used in trajectory prediction tasks for planning and

control purposes.

Annotation Type. The availability of various types of annotation is crucial for each dataset,

as it determines the tasks for which the data set can be used. We explore three forms of data

annotations in Table 1.1: 3D object annotations, 2D object annotations, and lane annotations. 3D

annotations can be divided into two categories: 3D bounding-box annotations and 3D point-cloud

annotations. A 3D bounding box annotation describes a cube that exactly holds one specific
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object. 3D point cloud annotations assign point-wise labels to each point in the point cloud,

indicating the point’s category. Many tasks in autonomous driving, such as 3D object detection

and 3D segmentation, require 3D annotations. Similarly, 2D annotations include 2D bounding

box annotations and pixel-wise 2D semantic annotations. Lane annotations describe different

types of lanes in the data, as well as the boundaries of drivable regions. This lane information

can be used to integrate map and traffic rule information into the AV algorithm, enabling more

efficient decision-making functions.

Traffic Condition. Datasets with a limited level of diversity in conditions and situations

are skewed to redundant and highly safe scenarios, which leads to the long tail problem (Cui

et al., 2019; Lee et al., 2019). To evaluate the performance of AVs in various scenarios, a dataset

must include data in a variety of settings. We consider mainly the following four key aspects:

weather, time, region, and traffic density. The weather conditions change the entire world, as

well as the style of the data collected by the sensors. For example, the nuScenes dataset (Caesar

et al., 2020) includes data from sunny, rainy, and cloudy conditions. As a result, the images have

different appearances depending on the weather. The time condition specifies whether the data

was obtained during the day or at night. The main distinction between these two scenarios is

the lighting. The region denotes the location from which the data is gathered. For example, the

INTERACTION dataset (Zhan et al., 2019) is collected at intersections and roundabouts, while

the KITTI dataset (Geiger et al., 2013) is collected in urban, rural, and highway settings. Finally,

the density of traffic considers the number of objects in traffic scenarios. The higher density

indicates a traffic jam or congestion, which requires traffic participants to pay more attention to

surrounding objects and take actions more carefully.

Traffic Simulation Platforms

In Table 1.2, we summarize existing traffic simulators and compare them in different aspects that

we are particularly interested in.

Open Source. Open-source simulators are easily customized, allowing users to easily design

and evaluate various safety-critical scenarios, as these scenarios are typically rare and sophisti-

cated and require a high level of customization. Therefore, whether the simulator is open source
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becomes one of our primary considerations. Most of the simulation platforms we list in Ta-

ble 1.2 are open source. Simulators such as AirSim (Shah et al., 2018) and SMARTS (Zhou

et al., 2020), for example, release their source code to the public, making it easier for users to

modify and enrich the testing environment.

Realistic Perception. The realism and fidelity in virtual simulation have a significant impact

on AV algorithms. High-fidelity, photorealistic simulators provide data that is similar to the

physical world, allowing for a more accurate assessment of AV performance in the real world.

For example, SUMMIT (Cai et al., 2020) can simulate 3D towns with a large number of vehicles,

pedestrians, and buildings. In addition, weather conditions can be further simulated, including

controlling the strength of precipitation, cloudiness, fog density, etc. Simple traffic simulators, on

the other hand, are incapable of supporting such detailed simulations. However, they are usually

light-weighted and easy to use (especially for RL algorithms), where algorithms can be tested

quickly without complicated configurations. For example, Highway-env (Leurent, 2018) is a 2D

simulator that can be installed using only one command and provides preliminary experimental

results in a short amount of time.

Customized Scenario. The freedom to customize scenarios is of great importance since

we mainly focus on the generation and evaluation of safety-critical scenarios. Adaptation to

scenarios usually involves the modification of the positions, speeds, and behaviors of vehicles.

For example, CARLA (Dosovitskiy et al., 2017) offers a systematic way for users to define

a scenario, through which users can specify the number of vehicles in a town and their own

behaviors. The weather and surrounding environment can even be arbitrarily adjusted to create

variations in the visual appearance of the scene. These functions provide more flexibility to users

and allow for more comprehensive testing of the reliability of AVs.

Back-end Engine. The simulator engines have a direct impact on the fidelity of the dynamics

of the simulated vehicle and the rendered 3D environment. Most simulation platforms are built

on Unreal Engine 4 (UE4) 1 or Unity 2, which are popular and professional game engines.

Other less popular engines, such as Panda3D (Goslin and Mine, 2004), are also considered.

Some nonrealistic environments, such as Highway-env (Leurent, 2018), do not even need back-

1https://www.unrealengine.com
2https://www.unity.com

19



end engines due to the low rendering requirement. A simple graphical user interface (GUI) is

sufficient for such a type of platform.

Map Source. Maps are critical components in AV testing systems. The maps in these traffic

simulators are created by humans or based on real-world data. For example, the Learn-to-Race

(L2R) (Herman et al., 2021) platform has three racetracks in its racing simulator, all of which

are based on real-world racetracks. Human-designed maps can be further classified into two

types: rule-based maps and procedurally generated maps. Highway-env (Leurent, 2018) incor-

porates 11 rule-based maps, including highways, parking lots, roundabouts, etc., all of which are

written manually by humans. MetaDrive (Li et al., 2021) maintains several basic roadblocks and

generates numerous maps in a procedural manner by randomly selecting one roadblock at a time.

API Support. API support for specific programming languages is crucial in large-scale

automated evaluation, since it allows users to run batches of scenarios. Popular programming

languages like Python and C++ are supported by most simulation platforms. Some simulators

such as CARLA (Dosovitskiy et al., 2017) and LGSVL (Rong et al., 2020) also provide support

for the Robot Operating System (ROS) 3, allowing users to integrate other open-source modules

developed by the ROS community.

Scenario Design Platform. There are several user-friendly platforms that support scenario

design, which already implements many rule-based scenarios that are normal or safety-critical.

We discuss some popular platforms below.

CARLA Scenario Runner (Contributors, 2019) provides traffic scenario definitions and an ex-

ecution engine for CARLA. Scenarios can be defined through a Python interface that allows users

to easily describe sophisticated and synchronized maneuvers that involve multiple entities such

as vehicles, pedestrians, and other traffic participants. It also supports the OpenSCENARIO (Jul-

lien et al., 2009) standard file format for scenario descriptions, making it simple and efficient to

incorporate a variety of existing traffic scenarios from the community.

SCENIC (Fremont et al., 2022) defines a language for the specification and generation of

scenarios. It describes distributions over scenes and the behaviors of their agents over time. One

advantage of SCENIC over other scenario languages is that it combines the concise and readable

3https://www.ros.org
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syntax for spatio-temporal relationships with the ability to impose hard and soft constraints over

the scenario.

SafeBench (Xu et al., 2022) is an open source platform focusing on systematically evaluating

the safety and robustness of autonomous driving algorithms based on various testing scenarios

and comprehensive evaluation metrics. The platform integrates eight types of safety-critical

scenarios and incorporates four generating algorithms. Users can also design their own traffic

scenarios and scenario generation algorithms following the instructions. SafeBench also provides

several RL-based autonomous driving algorithms with pre-trained RL model weights. Users can

easily test and improve the generated scenarios based on feedback from various autonomous

driving algorithms.

DI-Drive Casezoo (drive Contributors, 2021) consists of a set of scenarios used to train and

evaluate the diving policy in a simulator. Similar to the CARLA Scenario Runner (Contribu-

tors, 2019), DI-drive Casezoo has a routing scenario and multiple single scenarios that can be

triggered along the route. There are 18 route scenarios and 8 types of single scenario that can

be triggered depending on the route definition. Route scenario is defined in an XML file with

its corresponding scenarios. The trigger locations along the route are defined in JSON files. A

single scenario is defined in a Python file that describes the behaviors of traffic participants.

SUMO NETEDIT (team, 2018d) is a graphical scenario editor that can be used to create traf-

fic networks from scratch and modify all aspects of existing networks, including basic network

elements (junctions, edges, and lanes), advanced network elements (e.g., traffic lights), and addi-

tional infrastructure (e.g., bus stops). This tool is specifically designed for SUMO (Lopez et al.,

2018), which generates mainly large-scale traffic conditions without high-fidelity rendering.

SMARTS Scenario Studio is a scenario design tool on the SMARTS (Zhou et al., 2020)

platform that supports flexible and expressive scenario specification. Scenario definitions are

written in the Domain Specific Language, which describes the traffic environment, such as traffic

vehicles, routes, and agent missions. Scenario Studio also supports SUMO NETEDIT configu-

ration files (team, 2018d). Maps edited by NETEDIT (team, 2018d) can be easily included and

reused in Scenario Studio, which enriches the training and testing environments in the SMARTS

platform.
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CommonRoad (Wang et al., 2021c) is a simulator and an open source toolbox to train and

evaluate RL-based motion planners for AVs. Scenario configurations are written as XML files.

Users can read, modify, visualize, and store their own traffic scenarios using the Python API pro-

vided by CommonRoad. In addition, CommonRoad also supports more scenario specifications,

such as Lanelet2 (Poggenhans et al., 2018) and OpenSCENARIO (Jullien et al., 2009).

1.4 Challenge

Generating critical scenarios could be a hard problem due to many constraints and required prop-

erties. In this section, we identify five main challenges that cover the difficulty of the generation

process. Digging into the details of these challenges also helps us to discover potential directions

that can improve existing algorithms. The five challenges are as follows.

• Fidelity. The ultimate goal of scenario generation is to develop safe AVs that can run in the

real world. Therefore, it is useless to make AVs pass difficult but unrealistic scenarios. We

need to ensure that generated scenarios have the chance to happen in real traffic situations.

• Efficiency. Critical scenarios are extremely rare in the real world. The generation needs to

consider the efficiency and increase the density of the scenarios we are interested in.

• Diversity. Critical scenarios are also diverse. The generation algorithm should be able to

discover and generate as many different critical scenarios as possible.

• Adaptivity. Scenarios are dynamic due to the interaction between the AVs and their sur-

rounding objects. The scenarios we generate should be variable for different AVs rather

than targeting one specific AV.

• Controllability. In most times, we want to reproduce or repeat specific scenarios rather

than random ones. The generative model should be able to follow instructions or conditions

to generate corresponding scenarios.

We will discuss more details of the above five perspectives in the following sections and show

that the combination of the previous three types of generation methods could be very promising

ways to solve those challenges.
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Fidelity. The generation algorithm can create infinite scenarios, but not all of them can occur

in the real world. In particular, under the adversarial generation framework, the searched sce-

narios are likely to violate basic traffic rules. The intuitive way to avoid this problem is to add

constraints during the generation, but sometimes the constraints are not easy to define. Another

promising direction is to combine real-world data and adversarial generation, where real-world

data can be used as a priori distribution or constraints. Metrics such as Kullback–Leibler diver-

gence (Kullback and Leibler, 1951) and Wasserstein distance (Kantorovich, 1960) can be used

to minimize the gap between generated and real-world scenarios.

The fidelity of the scenario is also reflected by the high-dimensional sensing data, which

usually requires powerful DGMs to generate. The state-of-the-art methods mainly focus on the

generation of static images, such as faces. Recently, Neural Radiance Fields (NeRF) (Mildenhall

et al., 2020) have been popular for visual scene generation. This method uses NNs to learn the

ray-casting functions and then output different views of a scene. Extending this method to the

generation of large-scale traffic scenarios is also an interesting direction, which has been explored

in Block-NeRF (Tancik et al., 2022). Block-NeRF builds a large-scale traffic scene from pure

image data.

Efficiency. Due to the black-box property of most autonomous systems, it is inefficient to

generate adversarial examples without accessing the inner information of the systems. In the

area of adversarial attack, methods with surrogate models (Papernot et al., 2017) or gradient

estimation methods (Guo et al., 2019a) are utilized to address this problem. They either learn a

differentiable surrogate model to imitate the original autonomous systems or query the system to

estimate the approximate direction gradient.

It is also noticed that uniform sampling from collected data is quite inefficient because of

the rareness of critical scenarios. Therefore, previous methods propose using IS, which focuses

on the region of the distribution in which we are interested. However, it is difficult to extend IS

methods to high-dimensional cases (Arief et al., 2021b). In addition, even for adversarial genera-

tion methods, the black-box property of victim AVs remains the biggest obstacle. Without access

to internal failure information, generation algorithms cannot update their scenarios efficiently.

One potential solution to this problem is to take advantage of symbolic reasoning (Mao et al.,
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2019) and causal discovery (Spirtes and Zhang, 2016) techniques. Instead of performing the

optimization only in a large numerical space, using symbolic representation helps the generative

model to reason about the elements that make the scenario critical. Causal discovery methods

can uncover the underlying causality behind critical scenarios, finding the mechanisms that cause

the risk.

Diversity. Critical scenarios are rare but also diverse. Most of the current generative methods

focus on finding the best scenario that satisfies the requirements, but ignores diversity. To fully

evaluate AV performance, we need a wide range of scenarios. It is easy to fall into the risk of

overfitting if the testing scenarios are very similar. To increase the diversity of the scenario,

there are generally two directions. One is from the optimization perspective, where sampled-

based methods, such as the evolutionary method or Bayesian optimization, can be used to get

feasible solutions from multiple modes. The other direction is applying regularization to the

density estimation model or building multi-modal distribution (e.g., Gaussian Mixture Model) to

represent the scenario.

Adaptivity. In the safety and robustness areas, adversarial attack is considered a common

way to generate risky examples. The adaptivity, which means that the generated samples are

also applicable to other algorithms, is a crucial factor in evaluating the generation method. For

example, the pixel-level adversarial attack only works for the target victim. The attack is believed

to occur at the group level (Xu et al., 2018) or the semantic level (Xiao et al., 2018) to achieve

better transferability. An example in the critical scenario is to control one surrounding vehicle

(SV) to hit the AV step by step. After training the SV policy, we change the target AV. The new

AV shows a very different behavior and follows a route that the SV has never seen before. Most

likely, this scenario is not risky for the new AV. In this example, we should let the SV learn at

a higher level, where it contains the semantic meaning of risk. The SV can suddenly appear

behind another vehicle, which leaves the AV with a very short time to react. Essentially, we need

to build a hierarchical scenario where the high level makes a plan for the risky scenario and the

low level executes that plan with control commands.

Controllability. Controllability is useful in two cases. One is that we want to repeat one spe-

cific scenario with several parameters fixed, and the other is to generate different scenarios with
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Figure 1.3: Illustration of three types of generation methods: data-driven methods, adversarial

generation methods, and Knowledge-based generation methods.

similar settings. For example, we want to test the performance in a highway environment and

then we want to generate vehicles that approach the AV from different directions. Conditional

generative models (Mirza and Osindero, 2014; Sohn et al., 2015) are widely used to generate

controllable samples, which learn a joint distribution of the condition and the data. Sometimes,

the condition could be as simple as numerical values or as complex as natural languages. The

challenge is that current NN-based models have poor generalization and, therefore, fail when

given unseen conditions during generation. One promising direction could be to increase gener-

alizability under such a zero-shot setting.

1.5 Thesis Structure

In the following chapters, I will introduce my work, summarized into three categories, as shown

in Figure 1.3, according to the main source of information: data-driven generation, adversarial

generation, and knowledge-based generation. After introducing my previous work, I will discuss

future work and plans.

• Chapter 2 (Data-driven Generative Models) introduces two of my works for data-driven

generative models, both of which leverage the Variational Auto-encoder (VAE) as the back-

bone. The first work investigates sampling in latent space to generate different trajectory

encounters. Based on the first, the second work provides controllable generation and road-

trajectory association that random sampling cannot achieve, leveraging linear interpolation
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between safe data and collision data.

• Chapter 3 (Adversarial Generative Models) introduces two generative models of adver-

sarial attack. The first work uses Reinforcement Learning (RL) to find critical scenarios

to attack autonomous vehicles. However, only using the adversarial objective leads to un-

realistic scenarios with low diversity. As an improvement, the second work incorporates a

prior distribution of real-world data as regularization and introduces an adaptive sampler

to find multiple critical scenarios.

• Chapter 4 (Knowledge-based Generative Models) introduces two methods that use prior

knowledge in generative models, where knowledge is represented primarily by the causal-

ity of the critical events. The first work assumes that causality is known from human

knowledge and investigates how to inject causality into generative models. The second

work extends the framework to unknown causality and proposes a new generative model

with automatic causal discovery.

• Chapter 5 (Conclusion) concludes all the methods proposed during my Ph.D. research,

providing some important takeaway messages and discussion about potential future direc-

tions of using generative AI to build critical digital twins.
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Chapter 2

Data-driven Generative Models

If you torture the data long enough, it will confess to anything.

Ronald Coase

In this section, we consider algorithms that only use information from structural datasets.

For example, we control several vehicles to pass an intersection by making them follow the

trajectories recorded at the same intersection in the real world. These methods are divided mainly

into two parts. The first part directly samples from the dataset x ∼ D to reproduce the real-world

log, which usually suffers from the problem of rareness. The second part uses density estimation

models (e.g. DGMs) pθ(x) parameterized by θ to learn the distribution of scenarios, which

enables the generation of unseen scenarios. Usually, the learning objective of these models is

maximizing the log-likelihood

θ̂ = argmax
∑
x

log pθ(x), (2.1)

and the sampling process is conducted by x ∼ pθ(x) from a generative model.

2.1 Generation via Latent Space Sampling

Autonomous driving is being considered as a powerful tool to bring about a series of revolu-

tionary changes in human life. However, efficient interaction with surrounding vehicles in an
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Figure 2.1: Procedure of generating multi-vehicle encounter trajectories using VAE model.

uncertain environment continues to challenge the deployment of autonomous vehicles due to

the diversity of scenarios. Classifying the range of scenarios and designing appropriate asso-

ciated solutions separately appears to be an alternative to overcome the challenge, but limited

prior knowledge about complex driving scenarios poses an equally serious problem (Appen-

zeller, 2017). Some studies used deep learning technologies, such as learning controllers via

end-to-end neural networks (Yang et al., 2018b) to handle large amounts of high-quality data

without requiring full recovery of multi-vehicle interactions. However, deep learning methods

are limited to scenarios that have never been shown in the training data set.

Most of the released databases (Wang and Zhao, 2018) do not provide sufficient information

on multi-vehicle interaction scenarios due to technical limitations and the required data collec-

tion costs (Wang et al., 2017). An alternative is to generate new scenarios that are similar to the

real world by modeling the limited available data, as shown in Figure 2.1. The basic underlying

concept is inspired by the image style transformation (Gulrajani et al., 2017; Mirza and Osin-

dero, 2014) and the functions of deep generative models: projecting the encounter trajectories

into a latent space from which new trajectories can be generated using sampling techniques. A

suitable candidate, Variational Autoencoders (VAE) (Kingma and Welling, 2013), has been de-

veloped, which characterizes the generated data more explicitly with a prior distribution (Higgins

et al., 2016; Kim and Mnih, 2018). However, traditional VAE cannot fully capture the temporal

features of multi-vehicle encounter trajectories because it only handles information over spatial

space. As an improvement, neural networks in a recurrent frame of accounting history, such as

long-short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) and gated recurrent units
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(GRU) (Cho et al., 2014) are able to tackle sequences, such as vehicle encounter trajectories,

ordered by time.

On the basis of the requirement of purposely generating driving encounters and the limitation

of traditional VAE, we develop a deep generative framework integrated with the GRU module

to generate multi-vehicle encounter trajectories. Figure 2.2 illustrates our proposed MTG which

encodes driving encounters into interpretable representations with a bidirectional GRU module

(green) and generates the sequences through a multi-branch decoder (orange) separately. The

reparameterization process (blue) is introduced between the encoder and the decoder (Kingma

and Welling, 2013).

Model performance evaluation is challenging because of the lack of ground truth for the

generated multi-vehicle trajectories. Here, we propose a new disentanglement metric for model

performance evaluation in terms of interpretability and stability. Compared to the previous dis-

entanglement metric (Kim and Mnih, 2018), our metric is not sensitive to hyperparameters and

can also quantify the relevance among the latent codes.

This method contributes to the published literature by

• Introducing a deep generative model that uses latent codes to characterize the dynamic

interaction of multi-vehicle trajectories.

• Generating multi-vehicle trajectories that are consistent with the real data in the spatio-

temporal space.

• Proposing a new disentanglement metric that can comprehensively analyze deep generative

models in terms of interpretability and stability.

2.1.1 Variational Auto-encoder

The optimization of VAE is usually converted to the Evidence Lower Bound (ELBO) as the

estimation of the marginal log-likelihood is computationally intractable because of the curse of

dimensionality. The optimization function of VAE and β-VAE is formulated in 2.2. When β = 1,

traditional VAE (Kingma and Welling, 2013) is obtained, and when β > 1, β -VAE (Burgess
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Figure 2.2: Model structure of our multi-vehicle trajectory generator.

et al., 2018; Higgins et al., 2016) is obtained.

log pθ(x) = Eqϕ(z|x)[log pθ(x|z)]− βDKL(qϕ(z|x)||p(z)), (2.2)

where qϕ represents the encoder parameterized by ϕ, pθ represents the decoder parameterized by

θ, and z is a latent variable. β is used to reduce the distance between pθ(z|x) and qϕ(z|x), thus

increasing β helps to obtain more disentanglement. In 2.2, intuitively, the first term is interpreted

as the reconstruction error between real and generated trajectories, and the second term is a

tightness condition to guarantee pθ(z|x) = qϕ(z|x).

2.1.2 Multi-Vehicle Trajectory Generator (MTG)

To explore the benefits of the modified structure, we developed a single-directional GRU encoder

of β-VAE. The encoder processes multiple sequences simultaneously with one GRU module, and

the output (µ and σ) of the encoder is resampled through the reparameterization process (Kingma

and Welling, 2013). The process is formulated as follows:

henc = GRUenc([x1;x2]), (2.3)

µ = Wµhenc + bµ , σ = exp(
Wσhenc + bσ

2
), (2.4)

z = µ+ σ ×N (0, I), (2.5)
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Algorithm 1: Disentanglement Metric for VAE
Input: Set of input variance Σ={0.1, 0.4, 0.7, 1.0, 1.3, 1.6, 1.9, 2.2, 2.5, 2.8}

1 Initialize the set that stores output varianceΩ = []
2 for i from 1 to dim(z) do
3 for σ in Σ do
4 initiate Θ = []
5 for j in range(1, dim(z)) do
6 when i ̸= j, sample latent dimension zj ∼ N (0, σ2)
7 for n in range(1, N ) do
8 sample latent dimension i zni ∼ N (0, σ2)
9 ẑ← Encoder(x), x← Decoder(z)

10 Θ← Θ ∪ {ẑ}
11 Calculate variance and collect Ω← Ω ∪ {V ar(Θ)}
12 Return σ for each i in Ω

where x1 and x2 are two scenario sequences (driving trajectory), and z is the latent codes in

dimension K. The decoder takes z as the initial state and outputs the sequence coordinates one

after another. The two sequences are generated from the decoder at the same time by 2.6. We

select Tanh as the last activation function to ensure that the output value of the decoder is in the

range of [-1,1].

[x̄1; x̄2] = GRUdec(Pstart, z). (2.6)

To test other prevalent deep generative frameworks, we built a baseline on top of InfoGAN

with the same GRU modules as our MTG. The generator in InfoGAN shares the hidden states

among multiple sequences, and the discriminator encompasses a bi-directional GRU.

Compared to baseline 1, the MTG has two improvements. First, the bi-directional counter-

parts replace the single-directional GRU module, which enables the encoder to extract deeper

representations from the trajectories. We use this design because the traffic trajectories are still

practically reasonable after being reversed in the time domain. The pipeline of the MTG encoder

is formulated as follows:

h→enc = GRU→enc([x1;x2]) , h
←
enc = GRU←enc([x1;x2]), (2.7)

where GRU represents the GRU module. Then, we obtain the hidden feature by concatenating
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the features from two directions:

henc = [h→enc;h
←
enc]. (2.8)

Second, we separate the decoder into multiple branches and share the hidden states among them.

In this way, the hidden state retains all the information over past positions and provides guidance

to generate the other sequence. We note that generating two sequences independently avoids

mutual influence. The MTG decoder pipeline is formulated as

[xt1, h
t
1] = GRUdec,1(x

t−1
1 , ht−12 ), [xt2, h

t
2] = GRUdec,2(x

t−1
2 , ht−11 ). (2.9)

Then the objective function is concluded as

L = F(x1, x̄1) + F(x2, x̄2) + β ×DKL(qϕ(z|x)||p(z)), (2.10)

where F(·, ·) is the mean square error to calculate the reconstruction error, and x̄ix ∈ 1, 2 repre-

sents the reconstructive trajectory.

2.1.3 A Metric for Disentanglement

Disentanglement is a key factor for deep generative model evaluation. Some researchers used

the precision of the classifiers to represent the disentangled ability (Higgins et al., 2016; Kim and

Mnih, 2018). For example, (Higgins et al., 2016) acquired the training data by calculating the

difference ∥z1k− z2k∥ between two latent codes z1k and z2k for the k-th dimension. (Kim and Mnih,

2018) further considered the relationship between latent variables and latent codes. However,

the extreme sensitivity of simple classifiers to hyper-parameters, can skew the evaluation result.

Moreover, the metrics in (Higgins et al., 2016; Kim and Mnih, 2018) cannot be used directly

to analyze the stability and dependency of the latent codes. In Section III-C, we propose a

new disentanglement metric capable of comprehensively evaluating model performance without

using any classifier-based approaches.

The metric in (Kim and Mnih, 2018) holds one dimension of the latent code fixed and selects

other dimensions randomly, then calculates the variance of the output of the encoder under the
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Figure 2.3: Comparison of two evaluation metrics on Autoencoder and VAE.

assumption that the fixed dimension should have less variance, which is easily recognized by

a linear classifier. On the contrary, our metric (see Algorithm 1) is more stable. We divide

the input data into several groups with different variances (each group has L samples) zk,σm , in

which k ∈ K is the latent code index, and m ∈ M is the group index of the different variances.

Only one code was selected and sampled for each group, with the others fixed. We input these

artificial latent codes z into the decoder to generate the trajectories and then feed them into the

encoder to obtain new latent codes ẑ again. Finally, we calculate the variances of ẑ for each

group, revealing the dependence among the latent codes and the stability of the model.

2.1.4 Experiment and Analysis

In this section, we first introduce the dataset we use and the data pre-processing. Then, we

discuss the results from different perspectives.

Dataset and Preprocessing.

We used data from driving encounters collected by the University of Michigan Transportation

Research Institute (UMTRI) (Wang et al., 2017) of about 3,500 vehicles equipped with onboard
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Figure 2.4: Results of three models with traffic rationality evaluation.

GPS. The GPS device recorded latitude and longitude data to represent vehicle positions. All data

were collected with a sampling frequency of 10 Hz. We then linearly upscale and downscale the

trajectory vectors to the size of 50. Taking into account the bias sensitivity of neural networks,

we normalize the sequence value into the range of [-1, 1] by (2.11), where τ i = {(xi, yi)|i =
1, · · · , 50}.

τ̃ i =
τ i −mean(τ i)
max(τ 1, τ 2)

, i = 1, 2, (2.11)

where τ 1 and τ 2 means the trajectory of the vehicle 1 and vehicle 2.

Experimental Settings and Evaluation.

In all experiments, we set the dimension of z to 10. The dimension selections could be different

since we do not have prior knowledge about the dimension of the latent space. To validate the

capability of each code separately, we change the value of one dimension from -1 to 1 with a

step size of 0.1 and keep the other dimension fixed. This step size could be smaller for a more

detailed analysis. We conducted experiments from two different aspects to compare our MTG

with the two baselines.

The first aspect is to evaluate the model according to traffic rationality. As shown in the
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first column of Figure 2.4, we analyze the generated trajectories in the time domain with three

criteria:

• The distance between two sequences, which represents the variation of the distance be-

tween two vehicles.

• Variation in speed is expressed as the distance between two adjacent points. (i.e., a large

distance represents a high speed)

• The variation of trajectory direction for smoothness evaluation, where the angle between

two consecutive vectors represents the variation of moving direction.

The second aspect is to evaluate the models in the latent space with our proposed metric. For

each input variance, we calculate the variance of the output trajectories and display it as a bar, as

shown in Figure 2.5 and Figure 2.6. Each group consists of ten different variances distinguished

by color.

Generative Trajectories Overview.

Table 2.1 shows ‘zoom-in’ figures for a more detailed analysis of the generated MTG trajectories.

We connect the associated points in the two sequences, from the starting point (green) to the end

point (red), with lines. In each row, the four figures derive from four different values of one

latent code with a continuous change from left to right. These trajectories indicate that MTG

is capable of controlling some properties of generated trajectories (e.g., the location where two

vehicles meet and their directions) through latent codes.

Traffic Rationality Analysis.

Figure 2.4 shows some generated results based on the three criteria introduced in Section 2.1.4.

Different colors represent different values of the latent code z1, while the black dashed lines

represent the real traffic data for comparison.

The corresponding distance indicates that InfoGAN outputs trajectories with a small variance

even for different input values of z. This is in line with the problem of mode collapse that is

common in the GAN family. The VAE baseline and MTG obtain distances closer to the real
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Table 2.1: Analysis of Trajectories in the Time Domain

Generated results from MTG with 4 values of z1 (0.1, 0.3, 0.5, 0.7)

Two vehicles change from driving in the same direction to encountering each other.

Two vehicles change from driving in the opposite direction to encountering each other.

The trajectories of two vehicles rotate in the global coordinate.

trajectory. For MTG, the distance gradually decreases and then increases with z changing from

-1 to 1, and the speed of the vehicle changes along the latent code value. Comparing the last two

vertical columns in Figure 2.4 indicates that MTG can generate a much smoother trajectory than

VAE. In the real world, vehicles cannot turn sharply in a very short period of time due to physical

constraints. Therefore, a high value of consecutive angles will reduce the validity.

Disentanglement Analysis.

Figure 2.3(a) and (b) with z6 and others fixed explain why our metric outperforms the previous

one (Kim and Mnih, 2018). We obtain Figure 2.3(a) by using the metric in (Kim and Mnih,

2018) with an auto-encoder. After being normalized by dividing the standard deviation (left plot

in Figure 2.3(a)), the right part of Figure 2.3(a) shows the output variances of ẑ. Although there

are few differences in all codes, z6 still reaches the lowest value. Certainly, if all the results are
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Figure 2.5: Disentanglement of MTG.
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Figure 2.6: Disentanglement of VAE baseline.
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close to this case, we can obtain a high accuracy of the classifier while evaluating an autoencoder

without any disentangled ability; thus, the metric in (Kim and Mnih, 2018) has a problem in

evaluating the disentanglement. On the contrary, our metric (Figure 2.3(b)) can identify the code

that dominates and also reveals the dependency among the codes. High values of latent codes

except z6 indicate a strong dependency among all codes zi.

We then evaluated and compared two metrics on the VAE. Although z6 attains a much lower

value (Figure 2.3(c)) because of the capability of VAE to disentangle the latent code, it is still

uncertain whether the other codes are influenced by z6. Figure 2.3(d) shows the nearly zero value

of the remaining codes (except z5), that is, the independence between the codes. In addition to

proving the disentanglement, we find that z5 is a normal distribution without information (output

variance equal to 1).

Finally, we use the proposed metric to compare the VAE baseline with our MTG. Figure 2.5

shows (1) that only the sampling code obtains an increasing output variance when increasing the

input variance, and (2) that the other codes are close to zero. In other words, there is almost

no dependency among the latent codes in MTG, or changing one code does not influence other

features. Figure 2.6 shows two normal distributions at the positions of z6 and z9, indicating that

the VAE baseline obtains two latent codes without useful information. The plot of Code 8 in

Figure 2.6 also shows that z8 influences z1 and z5 because their output variances are non-zero.

The subplots inside Figure 2.5 and Figure 2.6 show the ratio of the output variance and the

input variance. A more robust approach will force the value close to 1. A robust generative model

requires the encoder to recognize all trajectories generated from the decoder, i.e., the variances

of the output and the input should be the same. However, the values in both figures are much

higher than 1, indicating that neither the VAE baseline nor MTG is robust enough.

2.2 Risk-level Adjustment with Controllable Generation

Different institutes of autonomous driving research have already released their datasets that con-

tain millions of data (Caesar et al., 2020; Chang et al., 2019a). While it costs a lot of effort and

money, these datasets provide a valuable asset for the advancement of self-driving technologies.
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Figure 2.7: Overview pipeline of proposed CMTS.

However, most naturalistic driving data are safe; thus, performance evaluations of autonomous

driving algorithms can be unreliable because the algorithms tend to overfit non-emergency sce-

narios and are hard to realize safety-critical scenarios, as shown in Figure 2.7.

Directly generating the safety-critical data may effectively augment the naturalistic collec-

tion process. Generative models, such as Generative Adversarial Networks (GAN) (Goodfel-

low et al., 2014), Variational Auto-encoder (VAE) (Kingma and Welling, 2013), and flow-based

method (Kingma and Dhariwal, 2018) widely used in the image field, have become popular re-

cently. These models fit a distribution based on large amounts of collected data and then generate

new data by sampling from the distribution. We will use the released datasets to obtain the pa-

rameters that shape the distribution representing the safety-critical cases. Manifold learning (Zhu

et al., 2018) shows that high-dimensional data (images, point clouds, trajectories, etc.) can be

expressed in a low-dimensional space, making it possible to manipulate the original data more

semantically. The use of real data and simulation provides researchers with safe and collision-

driving data.

Based on these preconditions, we propose a variational Bayesian framework, which we call

CMTS (shown in Figure 2.8) to synthesize safety-critical driving data from naturalistic safe tra-

jectory data and artificial collision trajectory data. The three-step framework encodes the dis-

tributions of safe data and collision data into a low-dimensional latent space; embeds the road

information in this latent space; and synthesizes the risk scenarios from the interpolated inter-

mediate distribution. We use a style transfer method to separate the road information and the
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Figure 2.8: Model structure of the proposed CMTS during the training stage.

driving behavior before we obtain the representation in a low-dimensional space.

To evaluate the effectiveness of our framework, we leverage the statistical indicators to mea-

sure the complexity of the augmented dataset and the original dataset. Experimental results show

that the augmented dataset improves the accuracy of trajectory prediction algorithms. In addi-

tion, the generated safety-critical scenarios help the model deal with unseen risky samples during

the testing stage. The contribution of this method is threefold:

• A variational Bayesian framework is proposed to fuse information of two domains.

• Rare near-miss driving data is generated by leveraging the proposed framework using pub-

lic driving datasets.

• The accuracy improvement of trajectory prediction algorithms and the enhancement of the

capability to deal with risky scenarios.
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2.2.1 Preliminary and Problem Formulation

VAE (Kingma and Welling, 2013; Rezende et al., 2014) is a directed graphical model with an

inference process and a generative process. In the generative process, the latent variable z is

generated from the prior distribution pθ(z) characterized by θ, and the data x are generated by

pθ(x|z). The parameter of the generative part θ is obtained through optimization. A direct way

to optimize the auto-encoder is to maximize the likelihood log pθ(x) of all data points:

log pθ(x) = Eqϕ(z|x) [log pθ(x, z)]− Eqϕ(z|x) [log pθ(z|x)]

= Eqϕ(z|x)

[
log

pθ(x, z) qϕ(z|x)
qϕ(z|x) pθ(z|x)

]
= Eqϕ

[
log

pθ(x, z)

qϕ(z|x)

]
︸ ︷︷ ︸

=L(x)

+KL (qϕ(z|x)||pθ(z|x))︸ ︷︷ ︸
≥0

,

(2.12)

where KL is the Kullback-Leibler divergence (KLD), and qϕ(z|x) is the variational approxima-

tion of pθ(z|x). Since the KL term is nonnegative, Lθ,ϕ(x) is the lower bound of the likelihood

log pθ(x), which is also called the evidence lower bound (ELBO).

L(x) = Eqϕ [−log qϕ(z|x) + log pθ(x, z)]

= −KL(qϕ(z|x)||pθ(z)) + Eqϕ [log pθ(x|z)] .
(2.13)

The goal of maximization of the likelihood is equivalent to maximizing the ELBO in Equa-

tion (2.13), the second term of which is denoted as the negative reconstruction error in the auto-

encoder terminology.

2.2.2 Conditional Multiple Trajectory Synthesizer (CMTS)

The proposed CMTS Figure 2.8 shows the: (1) Gated Recurrent Unit (GRU) data encoder that

encodes two sequence data (one from the original dataset, another from the collision dataset)

into a latent space; (2) the convolutional condition encoder that encodes the road map into a

multivariate Gaussian distribution; and (3) the GRU decoder that reprojects the combination of

sequence and road map back to the high-dimensional data space. The overall loss function is as
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follows:

LCMTS(x|y) = α(Lsr + Lcr) + β(LsKL + LcKL) + γLf , (2.14)

where y is the condition or style represented by the grid map images, α, β, and γ are the weights

of different parts of the loss. Lsr and Lcr are the reconstruction errors of the safe and the collision

datasets, and LsKL and LcKL are the KLD of the safe and the collision datasets, respectively. Lf

is the consistent regularization to help improve the performance of interpolation, which will be

introduced in Equation 2.19.

Merging Conditions with Style Transfer

The derivation of the conditional VAE (Sohn et al., 2015) is similar to (2.12). The only difference

is that the generative and inference models are both conditioned on y. In CMTS, y denotes the

information of the road restriction, which is already contained in the corresponding data point

x, thus we assume that qϕ(z|x, y) = qϕ(z|x). We further relax the constraints so that the prior

distribution of latent code z is statistically independent of input variables (Kingma et al., 2014).

Finally, we obtain the optimization function of conditional VAE:

L(x|y) =−KL(qϕ(z|x, y)||pθ(z|y)) + Eqϕ [log pθ(x|z, y)]

=−KL(qϕ(z|x)||pθ(z))︸ ︷︷ ︸
=LKL

+Eqϕ [log pθ(x|z, y)]︸ ︷︷ ︸
=Lr

.
(2.15)

Note that we retain the condition y in pθ(x|z, y) because we consider it to be the style of

the data that changes in the generative part. To perform the style transfer operation, we use

AdaIN (Huang and Belongie, 2017). We assume that the style information has been included in

x and z, so it is reasonable to first remove the original style before assigning a new one. The

formula of AdaIN is described below:

zy = AdaIN(zx, y) = σ(y)
zx − µ(x)
σ(x)

+ µ(y), (2.16)

where zx is conditioned by x and zy is conditioned by y. Since the road map, defined by a binary

matrix, is the condition, we use convolution layers to extract features and directly output the µ(y)
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and σ(y) of the condition y.

Interpolation during Training.

We use linear interpolation during the training stage to obtain the composed feature. We use VAE

as our basic model because its prior distribution of the latent code z is a multivariate Gaussian

distribution, which is naturally disentangled. Assuming the latent code of the safe data and the

collision data are zs and zc respectively, the linear interpolation in latent space becomes:

zf = λzs + (1− λ)zc, (2.17)

where λ ∈ [0, 1] is the weight controlling the proportion of components. The interpolation

distribution is formulated as:

p(zf |λ) ∼ N (λµs + (1− λ)µc, λ2σ2
s + (1− λ)2σ2

c ), (2.18)

where λ is drawn from a uniform distribution U [0, 1] for each pair of data points during the

training process. In the generation stage, λ is fixed and zf is sent to the decoder to generate the

near-miss data.

Reconstruction of Fusion Samples.

Next, we measure the reconstruction error of the composed latent code zf . For zs and zc, we

directly calculate the difference of x and qϕ(x|z). Since there is no reference for zf in the dataset.

To solve this problem, we propose a consistent regularization from the mutual information point

of view that is similar to (Yin et al., 2019). We ensure the reconstruction of zf by building a

unique mapping from xf to zf with the encoder pθ(x|z). From the view of mutual information,

we note there is a unique mapping from x to z if and only if the entropy H(z|x) = 0. However,

it is intractable to access all data pairs to calculate the entropy, so we use variational inference to
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obtain the upper bound of H(z|x):

H(z|x) ≜ −
∑
z

p(z|x)log p(z|x)

= −
∑
z

p(z|x)log q(z|x)−
∑
z

p(z|x)
[
log

p(z|x)
q(z|x)

]
= Hp(z|x)[log q(z|x)]−KL(p(z|x)||q(z|x))︸ ︷︷ ︸

≥0

≥ Hx̃∼pθ(x|z̃),z̃∼qϕ(z|x)[log qϕ(z = z̃|x̃)] ≜ Lf (z, z̃).

(2.19)

In the second step in (2.19), we assume p(x) is a uniform distribution, which is reasonable

for a dataset without any prior knowledge. The result of (2.19) uses the similarity of z and

x̃ to represent the entropy H(z|x), providing a consistent regularization term to guarantee the

reconstruction of zf . In our implementation, we use the L2-norm to calculate this Lf .

2.2.3 Experiment and Analysis

To demonstrate the performance of CMTS, we performed experiments on the three datasets and

used other data augmentation algorithms as two baselines.

Lines Dataset. Lines dataset was proposed in (Berthelot et al., 2018). The simple artificial

line dataset makes it possible to interpolate smoothness easily observed by some metrics such as

the Smoothness and Mean Distance in (Berthelot et al., 2018). The results of this data set are

used to compare the smoothness of the interpolation.

Digit datasets. The two handwriting digit datasets, MNIST and USPS (Denker et al., 1988),

each contain ten numbers but with entirely different styles. We consider the classes of the number

as conditions and interpolate two different datasets in the latent space. They are used to compare

the ability of models to interpolate two different domains with conditions.

Argoverse. The Argoverse Motion Forecasting dataset (Chang et al., 2019a) contains the

driving trajectories of two vehicles, as well as road map information. We extracted the trajectory

data from both vehicles and applied several data augmentation methods. To check the effec-

tiveness of the generated augmented trajectory datasets, we tested three trajectory prediction
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Figure 2.9: Three interpolation examples of safe trajectories and collision trajectories using the

Argoverse dataset.

algorithms on both the original and augmented datasets. Furthermore, we artificially generated

six of the most likely and real risky scenarios based on the Argoverse dataset.

Baselines. We select two baselines for comparison. One is the vanilla VAE structure called

MTG (Ding et al., 2019), which has no AdaIN module and no fusion loss term. The second is

a trajectory augmentation method proposed in (Bansal et al., 2018), which we call perturbed.

This method fixes the start and end points randomly, disturbing the midpoint pose, and then fits

a smooth trajectory to the perturbed point, the start and end points.

Results Analysis

Next, we provide results and an analysis of our experiments from different perspectives.

Metric 1: cluster number of datasets. To describe the complexity of a dataset, we use the

number of clusters of the dataset as a metric for evaluation. Although information entropy is
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Figure 2.10: Two interpolation examples of MTG, ACAI, and CMTS on the lines dataset.

Table 2.2: Results of Lines Dataset

Metric Mean Distance (×10−3) Smoothness

VAE (Kingma and Welling, 2013) 1.21±0.17 0.49±0.13
AAE (Makhzani et al., 2015) 3.26±0.19 0.14±0.02

VQ-VAE (Van Den Oord et al., 2017) 5.41±0.49 0.77±0.02
ACAI (Berthelot et al., 2018) 0.24±0.01 0.10±0.01

MTG 1.07±0.11 0.45±0.06
CMTS w/o AdaIN 0.32±0.02 0.15±0.01

commonly used to describe the complexity of a dataset, it requires labels that are unavailable

in our case. Therefore, we use the non-parametric Bayesian method, Dirichlet Process Gaussian

Mixture Models (DPGMM) (Görür and Edward Rasmussen, 2010), to cluster the dataset without

a predefined cluster number K. A large K means that the dataset is complex.

Metric 2: Trajectory risk. The performance of trajectory prediction algorithms in the orig-

inal dataset can be easily evaluated with mean square error (MSE), while in artificially designed

near-miss trajectories, MSE cannot capture risk information. We propose using the minimal dis-

tance between two vehicles (MDV) to represent the risk of encountering and the mean distance

between neighboring waypoints (MDN) to represent the smoothness.
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Figure 2.11: Examples of MTG, ACAI, CVAE, and CMTS on the MNIST digit datasets.

Table 2.3: Dataset Complexity 1 of Argoverse Dataset

Dataset OD CD MTG CMTS OD+CMTS

K 64±7 76±16 53±8 71±11 127±20
1 A Higher number is better. All datasets have the same number of samples.

Lines Dataset: interpolation results. The interpolation examples in Figure 2.10 show that

CMTS has smoother results than the VAE baseline and the results are similar to the state-of-the-

art ACAI interpolation method (Berthelot et al., 2018). Table 2.2 reports the quantitative analysis

with two metrics proposed by (Berthelot et al., 2018). CMTS achieves a similar score with ACAI

and outperforms other methods, which proves that CMTS is capable of smooth interpolation in

a simple situation with one attribute.

Digit Datasets: conditional style transfer. Figure 2.11 shows the interpolation results for

the MNIST and USPS datasets using the four methods. Since MTG and ACAI cannot use label

information, we add Conditional VAE (CVAE) (Sohn et al., 2015) as a new competitor, which

uses labels to control the generated results. MTG has a noisy boundary between two kinds

of classes since the style and content information are entangled. This entanglement makes it

difficult to achieve a smooth interpolation. In contrast, CVAE achieves better results than MTG
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Table 2.4: Error of Trajectory Prediction (2 seconds of history and 3 seconds of prediction)

Method Vanilla-LSTM Social-LSTM CS-LSTM

Dataset OD Perturbed MTG CMTS OD Perturbed MTG CMTS OD Perturbed MTG CMTS

MSE 0.093 0.090 0.087 0.083 0.074 0.072 0.067 0.062 0.048 0.046 0.046 0.042
MDV 0.025 0.035 0.081 0.143 0.027 0.038 0.114 0.125 0.032 0.043 0.097 0.163
MDN 2.682 2.153 1.552 1.181 2.732 2.321 1.463 1.029 2.124 1.852 1.274 0.961

Figure 2.12: T-SNE results of interpolation samples. The pink and blue points represent the safe

samples and the collision samples, respectively.

and ACAI because it separates the number class as a condition. CMTS gives better interpolation

results than CVAE because the changes between two entirely different styles are much smoother.

We demonstrate that CMTS has the ability to fuse information from two domains with conditions.

Argoverse: increment of data complexity. We use the DPBMM tool to evaluate the original

Argoverse dataset (OD); a collision dataset (CD) obtained by translating two trajectories to a

predefined collision point in OD; a dataset generated by MTG; and a dataset generated by CMTS.

In the MTG and CMTS generating stage, we set the parameter λ to 0.3 to synthesize samples

that are closer to the risk scenarios.

We encode each dataset into a latent space and use the low-dimensional codes to train four

non-parametric Bayesian models. We set the concentrating parameter α to 1 for all models and

use the output cluster number K as an indicator of the complexity of the datasets. Table. 2.3
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Figure 2.13: Trajectory prediction results for the six risky scenarios with CS-LSTM.

shows that the dataset generated by CMTS has larger numbers of clusters than OD and CD. The

combination of the CMTS dataset and the OD has the highest number of clusters among all the

datasets, which means that the CMTS dataset contains clusters unseen in OD and CD; otherwise,

CMTS + OD will have similar K to OD.

To visualize the rare trajectories generated by CMTS, Figure 2.9 shows three examples, each

of which has two map conditions from the original and collision datasets. In addition, we use

T-SNE (Van der Maaten and Hinton, 2008) to display the linear interpolation samples in a 2-

dimensional space in Figure 2.12, where the interpolation samples are roughly arranged in the

2-dimensional space.

Argoverse: improvement of trajectory prediction. Three trajectory prediction methods

(Vanilla-LSTM Social-LSTM (Alahi et al., 2016) and CS-LSTM (Deo and Trivedi, 2018)) and

two kinds of driving scenarios are selected to test the augmented dataset. The first kind is safe

driving scenarios sampled from the original Argoverse dataset. The second kind is the risky

situations that are rarely collected in the naturalistic dataset. We artificially design six risky

scenarios (Figure 2.13) based on the Argoverse dataset.

In Table 2.4, we compare the performance of the prediction algorithms trained on four
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datasets: original dataset (OD), perturbed dataset (augmented by random perturbation), and

MTG and CMTS dataset. For all three trajectory prediction models, CMTS achieves the best

result in MSE, MDV, and MDN, which shows that new scenarios help trajectory prediction algo-

rithms improve their ability to deal with risky situations.

To evaluate performance in risky scenarios, we selected 18 CS-LSTM predicted examples

as shown in Figure 2.13. Since the near-miss data do not exist in OD, the predictions from the

model trained in OD are awful. The reason is that the risky scenario data comes from other

domains, which has exceeded the generalization scope of the model trained only on OD. For the

two models trained on MTG and CMTS, we observe that the model trained on the CMTS dataset

predicts more smooth and reasonable trajectories.

2.3 Retrieval Augmented Generation for Controllable Traffic

Scenarios

Simulation is indispensable in the development of autonomous vehicles (AVs), primarily due to

the considerable risks associated with training and evaluating these systems in real world con-

ditions. The biggest challenge in simulations lies in achieving realistic driving scenarios, as

this realism influences the discrepancy between AV performance in simulated and actual en-

vironments. Although advances in high-quality graphical engines have significantly enhanced

the perception quality of simulators, the realism of agent behavior remains constrained due to

complicated interactions among naturalistic agents. To counteract this issue, data-driven simula-

tion has emerged as a promising approach in the realm of autonomous driving, using real-world

scenario datasets to accurately generate agent behaviors.

With the rapid achievement of deep generative models (Ho et al., 2020) and imitation learn-

ing algorithms (Hu et al., 2022), current data-driven simulations (Gulino et al., 2023; Li et al.,

2023) can generate scenarios that closely mimic human driver behavior. However, the effective-

ness of these simulations in accelerating the development of AV is limited. This limitation stems

from the need for scenarios that meet specific conditions tailored for targeted training and evalu-

ation. Achieving such controllability in simulations is challenging due to the complex nature of
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Figure 2.14: (a) Conventional methods make the model memorize the data distribution for gen-

erating. (b) In contrast, our method employs a retriever to query datasets (including external

data obtained after training) and uses a generative model to generate scenarios by integrating the

information from the retrieved scenarios.

driving scenarios, which involve intricate interactions, diverse road layouts, and varying traffic

regulations.

In pursuit of controllability, existing work applies additional guidance, typically in the form

of constraint functions (Ding et al., 2021b; Zhong et al., 2023b) or languages (Tan et al., 2023;

Zhong et al., 2023a), to pretrained scenario generative models. Regularization of the generation

process through these tools is straightforward and effective, yet it encounters two principal chal-

lenges. First, the training of scenario generative models typically utilizes naturalistic datasets,

which might not encompass the specific scenarios desired according to the control signals. Even

if such scenarios exist within the dataset, they are often omitted because of the rarity of long-tail

data. The second challenge is that the representation of the guidance to the generative model may

not be sufficiently expressive to accurately depict complex scenarios, such as specifying intricate

interactions among multiple vehicles, using language. These limitations underscore the need for

a more sophisticated and nuanced framework for the generation of controllable scenarios.

Retrieval Augmented Generation (RAG) (Chen et al., 2017a; Guu et al., 2020), which en-

hances the generative process by querying related information from external databases, repre-

sents great potential in the domain of large language models (Lewis et al., 2020). In contrast
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to conventional models that memorize all knowledge within their parameters, as shown in Fig-

ure 2.14(a), RAG models, shown in Figure 2.14(b), learn to generate comprehensive outputs by

retrieving pertinent knowledge from a database, based on the input provided. A notable aspect of

RAG is the ability of the database to undergo updates even after the model has been trained, al-

lowing continuous improvement and adaptation. This flexible framework offers possibilities for

controllable scenario generation by using appropriate template scenarios as input and facilitat-

ing the generation that is not only realistic but also aligned with specific training and evaluation

requirements.

In this work, we present RealGen, a retrieval augmented generation framework to generate

traffic scenarios. This framework, as shown in Figure 2.15, begins with the training of an encoder

through contrastive self-supervised learning (Oord et al., 2018) to allow the retrieval process

to query similar scenarios in a latent embedding space. Using this latent representation, we

subsequently train a generative model that combines retrieved scenarios to create novel scenarios.

The key contributions of this paper are summarized in the following.

• We develop a novel contrastive autoencoder model to extract scenario embeddings as latent

representations, which can be used for a wide range of downstream tasks.

• We propose the first retrieval augmented generation framework using the latent represen-

tation tailored for controllable driving scenario generation.

• We validate our framework through qualitative and quantitative metrics, demonstrating

strong flexibility and controllability of generated scenarios.

2.3.1 A Latent Representation of Scenario

A crucial element within the retrieval system is the data retrieval selection metric, which is

typically implemented through a distance function between the query sample and the candidate

samples in the database. Unlike text, which can be converted into word embeddings, traffic

scenarios encompass sequential behaviors and intricate interactions among entities, complicating

the establishment of a similarity metric for these scenarios. Consequently, in this section, we

introduce a scenario autoencoder to extract latent representations that facilitate the assessment of
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Figure 2.15: Left: the training pipeline for the encoders and decoder aimed at learning latent

embeddings of scenarios. A contrastive loss is applied to behavior embeddings to ensure invari-

ance to absolute positions. Middle: the training pipeline for the combiner with frozen encoder

and decoder parameters. We use K-Nearest Neighbors (KNN) to retrieve scenarios similar to a

template scenario in the dataset and use the retrieved behaviors to reconstruct the template sce-

nario. Right: the generation pipeline with a retriever and a generator.

similarity between various traffic scenarios, a vital component in our RAG framework.

Scenario Definition

Each scenario is characterized by the trajectories τ ∈ RM×T×5, which encompasses agents M

over a maximum of T time steps. The trajectory of each agent is composed of parameters

[x, y, v, c, s], which signify position x, position y, velocity v, cosine of the heading c, and sine

of the heading s. The initial state of these entities is denoted as τ0 ∈ RM×5. Furthermore, the

map is encapsulated by m ∈ RS×4, composed of S lane segments. The attributes of these points

[xs, ys, xe, ye] correspond to the starting and end positions of each segment.

Scenario Autoencoder

Autoencoders (Schmidhuber, 2015) are used to learn compressed latent representations of high-

dimensional data, where an encoder projects the data into latent code and a decoder reconstructs
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the code in the data space. Given that traffic scenarios encompass spatial and temporal dynamics

from multiple agents, we design a hierarchical encoder structure alternating between spatial and

temporal layers based on transformer architecture (Vaswani et al., 2017). As depicted in the left

part of Figure 2.15, our design incorporates three encoders for behavior, map, and initial position,

respectively.

First, we design a behavior encoder Eb with a spatial-temporal transformer structure that

comprises a set of temporal transformer encoders (Encodert) and a set of spatial transformer en-

coders (Encoders). The trajectory τ is first transformed into a latent embedding zb, where H de-

notes the hidden dimension, through a Multiple Linear Perception (MLP) module. Subsequently,

an alternating encoding procedure extracts spatial and temporal features from zb. To preserve

temporal information, we add a sinusoidal positional embedding (PE) to the embedding before

employing the temporal transformer. To retain distinct agent information and further compress

the behavior feature, we calculate the mean latent embedding across the temporal dimension,

resulting in the final behavior embedding zb ∈ RM×H . Besides the behavior encoder, we also

process the map information represented by lane vectors with the attention mechanism (Vaswani

et al., 2017). Similarly to the first step in Eb, we project m to the latent space with an MLP mod-

ule. Then we apply a multi-head attention module (MHA) with layer normalization (LN) (Ba

et al., 2016) to acquire the map embedding zm ∈ RS×H with a learnable query embedding qm.

When developing the decoder, a spatial-temporal transformer architecture was designed to

decode embedding behavior zb. Given that zb lacks the temporal dimension, we first replicate it

T times to then add a PE before inputting it into the temporal transformer encoder. Throughout

the decoding process, the map embedding zm is injected by a cross-attention mechanism: zb ←
zb + MHA(zb, zm, zm). MHA(Q,K, V ) is the multi-head attention with Q, K, V representing

query, key, and value:

MHA(Q,K, V ) = Concatenate(h1, ..., hi)WO,

hi = Attention(QWQ
i , KW

K
i , V W

V
i ),

(2.20)

where WO, WQ
i , WK

i , and W V
i are learnable parameters. The last component of the decoder is

an MLP that projects the hidden embedding back into the data domain, resulting in the recon-
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structed trajectory τ̂ . To train the encoders and decoder, the mean square error is used as the

reconstruction loss, expressed as Lr = |τ̂ − τ |2. Comprehensive descriptions of the encoding

and decoding processes are provided in Algorithm 2.

It is important to note that, while the current design of the autoencoder is sufficient for ac-

quiring compressed representations of scenarios, these representations are not invariant to the

absolute coordinates and the order of the agents. This limitation can lead to substantial em-

bedding distances between similar scenarios. To address these issues, two enhancements are

proposed and detailed in the following section.

Invariant feature with contrastive loss

To enhance the representation of scenario similarity in the behavior embedding zb, we employ

contrastive learning to acquire invariant features. Specifically, we integrate InfoNCE (Oord et al.,

2018) as an additional loss function Lc, which optimizes the categorical cross-entropy to distin-

guish a positive sample from a batch of negative samples. In practice, for a query embedding

zb, a positive sample z+b is generated by applying random rotation and translation to the original

scenario τ,m. Meanwhile, negative samples Z−b are selected from the remaining samples in the

same batch. In conventional InfoNCE, to bring zb and z+b closer together, the inner product is

calculated between the embedding zb and the set z+b , Z
−
b , using cross-entropy loss to identify the

index of the positive sample.

To ensure that the ordering of the agents does not affect the outcomes, zb ∈ RM×H should

exhibit permutation invariance across the dimension M . Otherwise, simply stacking them into

a one-dimensional vector could erroneously represent distinct scenarios as significantly differ-

ent. To establish permutation invariance, we adopt the Wasserstein distance W2 (Villani et al.,

2009) as a more suitable metric than the cosine distance for assessing similarity. Considering

zb as a distribution representing M individual behaviors, the intuition behind this choice is that

the Wasserstein distance identifies the minimal adjustments necessary for the behaviors in one

scenario to mirror those in another. With such a powerful tool, we have the following contrastive

loss:

Lc = −
∑
zb

log
exp

[
−W2(zb, z

+
b )
]∑

z′∈{z+b ,Z
−
b }

exp [−W2(zb, z′)]
. (2.21)
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Algorithm 2: Details of Encoder and Decoder

1 Behavior Encoder Eb (τ ):
2 zb ←MLP (τ ) // projection
3 for le in [1, ..., L] do
4 zb ← Encodert (PE + zb)
5 zb ← Encoders (zb)
6 zb ← mean(zb)
7 return behavior embedding zb
8 Map Encoder Em (m):
9 Initialize a learnable query qm

10 zm ←MLP (m) // projection
11 zm ← LN (MHA (qm, zm, zm))
12 zm ← LN (zm + MLP (zm))
13 return map embedding zm

14 Initial Pose Encoder Ei (τ0):
15 zi ←MLP(τ0) // projection
16 return initial pose embedding zi
17 Decoder D (zi, zb, zm):
18 zr ← zb + MHA(zb, zi, zi)
19 for ld in [1, ..., L] do
20 zr ← Encodert (PE + zr)
21 zr ← Encoders (zr)
22 zr ← zr + MHA(zr, zm, zm)

23 τ̂ ←MLP (zr) // projection
24 return reconstructed trajectory τ̂

The implementation of this loss results in the behavior embedding zb lacking absolute coor-

dinate data, making the decoder incapable of accurately reconstructing the precise trajectory. To

handle this problem, we add the initial poses τ0 of all agents as a supplementary input for the

decoder. We encode these poses into zi with an MLP encoder Enci, and then integrate it into the

decoder with an MHA module: zr ← zb + MHA(zb, zi, zi). Additional specifics regarding the

initial pose encoder are detailed in Algorithm 2. In the training stage, the objective is to minimize

a combined loss function L = Lr + λLc, where λ serves as a weighting factor for contrastive

loss and is uniformly set at 0.1 for all experiments.

2.3.2 Retrieval Augmented Scenario Generation (RealGen)

The auto-encoder structure introduced in Section 2.3.1 builds a one-to-one generation frame-

work, which still needs additional modules to support the retrieval augmented generation, which

is a many-to-one framework. In this section, we introduce a module called Combiner, which

takes input behavior embeddings from multiple scenarios and outputs the combined embedding.

To train this module, we designed a KNN-based training pipeline that forces the model to learn

to combine and edit existing scenarios.
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The Training of Combiner

Unlike the trajectory prediction task (Shi et al., 2022) which has ground truth as the optimization

target, the objective of training the combiner is to learn the alignment of behaviors in retrieved

scenarios with the specified initial pose and map. A well-trained combiner should be able to

compose behaviors from these retrieved scenarios, thereby generating new scenarios that have a

similarity to all the retrieved scenarios. This type of objective aligns with the concept of meta-

learning, or ‘learning to learn’, as described in (Hospedales et al., 2021).

Within our training framework, for a given query scenario τ,m in the dataset, we initially

utilize the behavior encoder to obtain zb and then use KNN to identify K similar behavior em-

beddings from the database, denoted as zret = [zb,1, ..., zb,K ]. Building on this, we propose a

model comprising two MHA modules as the combiner:

zrag ← zi + MHA(zi, zret, zret),

zrag ← zrag + MHA(zrag, zm, zm),
(2.22)

where zi ← Ei(x0) and zm ← Em(m) are the initial pose embedding and the map embedding of

the query scenario. Gradients are stopped for zi and zm. Assuming that the K nearest scenarios

adequately represent the query scenario, it should be feasible to reconstruct the behavior of the

query scenario, zb, using the retrieved scenario, zrag. Consequently, we employ the following

loss function as our training goal:

Lrag = ∥D(zi, zrag, zm)− τ∥2, (2.23)

wherein the parameters of the decoder Dϕ remain fixed during training. Essentially, this training

method is designed to learn an ”inverse” operation of the KNN, aiming to reconstruct a query

scenario that closely resembles all K retrieved scenarios in the database.

The generation pipeline

The scenario generation pipeline, as delineated in Figure 2.15, is categorized into the retriever

and generator components. The generation process is expedited by preprocessing all scenarios in

58



the database using a behavior encoder, which yields behavior embeddings that facilitate efficient

similarity computation.

The retriever enhances the versatility of generation by dividing the process into two stages.

In the initial stage, users can choose a set of template scenarios that represent specific condi-

tions. These may include manually annotated scenarios with tags denoting actions like left or

right turns, thereby enabling the generation of additional scenarios under similar tags or even a

combination thereof. Additionally, templates can include critical and interesting scenarios col-

lected from real-world data. Solely relying on these templates for generation could be limited,

which is mitigated by incorporating a secondary phase, which employs a KNN approach to fetch

high-quality scenarios from a vast and unlabeled database to augment adaptability.

Subsequently, the generator, comprising a combiner and a decoder, follows the same in-

ference as the combiner training with the initial pose and lane map specified by the user. We

obtain the RAG embedding zrag with Eq. (2.22), and then infer the generated scenario through

τrag ← D(zi, zrag, zm).

Details of model architecture

In addition to the model architecture introduced in Algorithm 2, we also want to provide more

details about the spatial-temporal transformer structure. For the projected embedding with shape

[B,M, T,H] with batch size B, we reshape it to shape [T,B × M,H] and treat T as the se-

quence dimension. Then we add a positional embedding to it before putting it into the temporal

transformer encoder. After that, we reshape it to [M,B × T,H] and treat M as the sequence

dimension. Then we directly put it into the spatial transformer encoder.

During the decoding process, we repeat the reconstructed embedding zr with shape [B,M,H]

along with the temporal dimension to shape [B,M, T,H]. Then we follow the same process as

the encoding process for spatial-temporal decoding with a positional embedding added before

the temporal transformer encoder.
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2.3.3 Experiment

In this section, we start with an overview of the experimental setup and details regarding the

implementation of the RealGEN framework. Then we discuss the baselines, including different

types of autoencoders and RealGen variants, used for comparison. In the discussion of the find-

ings, we evaluate, respectively, the quality of scenario embedding and the generation capability

of RAG.

Settings and Implementation Details

We conducted all training and evaluation with the nuScenes (Caesar et al., 2020) dataset using

the trajdata (Ivanovic et al., 2023) package for data loading and processing. Each scenario spans

a duration of 8 seconds, operating at a frequency of 2 Hz, and encompasses a maximum of 11

agents. We filter out agents that travel less than 3 meters in 8 seconds and select 11 agents

closest to the ego vehicle. The map contains 100 lanes (each lane has 20 points) that are ordered

according to the distance between the center of the lane and the center of the ego vehicle.

To train RealGen, we use Adam (Kingma and Ba, 2014) as the optimizer to update the param-

eters of the autoencoder and the combiner. To make the calculation of the Wasserstein distance

efficient, we use the Sinkhorn distance (Cuturi, 2013), an entropy regularized approximation of

the Wasserstein distance (Villani et al., 2009), with implementation in the GeomLoss (Feydy

et al., 2019) package.

Baselines

In the experimental section, we evaluate the following reconstruction-based generative models

as baselines for comparison. Autoencoder (AE) shares the same behavior encoder, map encoder,

and decoder structures as RealGen, serving as the most straightforward baseline for scenario

reconstruction. Contrastive AE mirrors the structure of the RealGen autoencoder but omits the

initial pose as absolute information. Masked AE is a self-supervised learning baseline, which

has been investigated for trajectory data as described in (Chen et al., 2023; Cheng et al., 2023;

Wu et al., 2023; Yang et al., 2023). To evaluate the controllable generation capability, we select

a state-of-the-art modelLCTGen (Tan et al., 2023) as the baseline, which takes a high-level
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agent representation z and a vector map m as input. We also consider LCTGen w/o z, a variant

model proposed in the original paper to show the reconstruction results without using the agent

information. Given that our method has two phases, we refer to the autoencoder component

specifically as RealGen-AE and the complete model as RealGen.

Details of evaluation metrics

We provide details on the metrics we use in the experiment section.

Maximum Mean Discrepancy (MMD) is a statistical measure used to test the similarity of

two distributions, denoted as P and Q, by calculating the distance between the means of these

distributions in a feature space defined by a kernel function. In our implementation, we use a

Gaussian kernel k(x, y) (also known as a radial base function kernel). Assume we have samples

X = {x1, x2, ..., xm} from distribution P and Y = {y1, y2, ..., yn} from distribution Q, we

calculate the MMD statistic as:

MMD2(P,Q) =∑
i,j k(xi, xj)

m2
+

∑
i,j k(yi, yj)

n2
+

2
∑

i,j k(xi, yj)

mn
,

(2.24)

where m and n are the number of samples from P and Q respectively. A higher MMD value

indicates a greater discrepancy between the two distributions.

Mean Average Displacement Error (mADE) is a metric commonly used in the field of

trajectory prediction, which quantifies the accuracy of predicted trajectories by comparing them

with actual trajectories. Assume the predicted trajectory is τ̂i = {p̂i1, p̂i2, ..., p̂iT} and the ground

truth trajectory is τi = {pi1, pi2, ..., piT} for agent i with trajectory length T , we calculate mADE

with

mADE =
1

N

N∑
i=1

(
1

T

T∑
t=1

∥p̂it − pit∥
)
, (2.25)

where N is the number of agents in the validation dataset.

Mean Final Displacement Error (mFDE) is another important metric used in trajectory

prediction, similar to mADE, but with a specific focus on the prediction accuracy at the final
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time step of the trajectories. With the same notation defined above, we calculate mFDE with

mFDE =
1

N

N∑
i=1

∥p̂iT − piT∥. (2.26)

Scene Collision Rate is used to calculate the overlap between two vehicles for all time steps

in all trajectories. Specifically, a collision is said to occur between two vehicles if the Intersection

Over Union (IOU) of their representing rectangles exceeds the threshold θ:

Collision(R1, R2) =

 1, if IOU(R1, R2) > θ,

0, otherwise,
(2.27)

where the threshold θ is set to 0.1 and IOU is defined as:

IOU(R1, R2) =
Area of Intersection (R1, R2)

Area of Union (R1, R2)
. (2.28)

Therefore, the scene collision rate is defined as:

Scene Collision Rate =
1

N

N∑
i=1

Collision(R1, R2). (2.29)

Off-Road Rate is used to calculate whether the trajectory is in the drivable area. We first

calculate the indicator function of off-road with

Off-Road(τt) =

 1, if τt not in drivable area

0, otherwise
. (2.30)

Then we calculate the rate with

Off-Road Rate =
1

N

N∑
i=1

(
1

T

T∑
t=1

Off-Road(τ it )

)
. (2.31)
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Figure 2.16: Qualitative evaluation of similar and dissimilar scenarios calculated by our scenario

embedding. The rectangles represent the initial poses of the vehicles and the lines represent the

future trajectories.

Evaluation of Behavior Embedding

We first evaluate the quality of the learned representation of behavior, which is critical for the

following retrieval and generation processes.

Visualizing similar and dissimilar scenarios. After training the auto-encoder with con-

trastive loss, the distance between behavior embeddings can be used as an indicator of the simi-

larity of the two scenarios. To validate this statement, we visualize qualitative examples of using

a query to find the most similar (minimal W2 distance) and dissimilar (maximal W2 distance)

scenarios in Figure 2.16. We observe that the most similar scenario contains the same behavior

and number of vehicles as in the query scenario.

Classifying Scene ID with behavior embedding. To further provide quantitative results on

how well the behavior embedding encodes behavior information, we leverage the Scene ID of

the nuScenes dataset. Each scene typically lasts 20 seconds, and our scenario segments last 8

seconds, so we get multiple segments belonging to the same Scene ID. We assume that the seg-

ments having the same Scene ID have similar behaviors so that we can calculate the accuracy by
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Figure 2.17: (a) Scene ID accuracy using the behavior embedding with difference distance met-

rics. (b) A matrix shows the Wasserstein distance between scenario segments, where each block

contains the segments that belong to the same Scene ID.

Table 2.5: Accuracy of linear probing

AE Contrastive AE Masked AE RealGen-AE

82.5% 67.1% 86.2% 87.8%

using the distance to find the closest segment. In Figure 2.17, we summarize the results in the

left part, where top-k means we calculate the accuracy for the closest k segments. To validate

the effectiveness of W2-distance, we also permute the order of agents in the behavior embed-

ding, which is denoted as cosine-permuted and W2-permuted. We find that the cosine distance

cannot deal with the permuted setting, as the order is important when stacking the embedding of

agents. Our method performs well in top-1 and top-5 settings but badly in others, which could be

explained by the fact that segments in one scene have very different behaviors. To validate this,

we plot the distance matrix between the segments for 11 scenes in the right part of Figure 2.17.

We find sub-blocks in the diagonal blocks, indicating that segments are similar in a small time

interval but could be different when the time interval is large.

Linear probing of behavior embedding. Linear probing, a commonly employed method
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Table 2.6: Results of realism metrics. Recon.-based and Retrieval-based means using the target
scenario and retrieved scenarios as input for generation, respectively.

Category Method mADE mFDE Speed Heading SCR ORR

Recon.
-based

AE 0.18±0.03 0.41±0.06 0.04±0.01 0.10±0.01 0.02±0.00 0.02±0.00

Masked AE 0.16±0.01 0.39±0.01 0.04±0.01 0.09±0.01 0.03±0.00 0.02±0.00

Contrastive AE 0.92±0.02 1.47±0.04 0.12±0.00 0.36±0.02 0.04±0.00 0.04±0.00

RealGen-AE 0.31±0.01 0.53±0.01 0.08±0.00 0.15±0.01 0.03±0.00 0.02±0.00

Retrieval
-based

AE-KNN 14.3±0.03 16.4±0.05 0.57±0.01 0.59±0.02 0.15±0.01 0.15±0.01

LCTGen 4.76±0.09 6.24±0.08 0.52±0.06 0.57±0.03 0.07±0.01 0.07±0.01

LCTGen w/o z 14.2±0.07 16.7±0.09 2.04±0.04 1.42±0.00 0.16±0.02 0.13±0.04

RealGen-AE-KNN 13.1±0.06 14.1±0.03 0.46±0.01 0.44±0.00 0.12±0.01 0.11±0.00

RealGen 1.54±0.04 1.21±0.03 0.21±0.03 0.21±0.01 0.05±0.00 0.04±0.00

to assess representations in self-supervised learning (SSL), involves training a linear classifier

using the derived embeddings (He et al., 2022). To train this classifier, we implemented heuris-

tic rules to assign basic behavioral labels (acceleration, deceleration, stopping, keeping speed,

left/right turn) to each agent’s embedding. The results, along with comparisons with the baseline

models, are presented in Table 2.5. These findings demonstrate that the embeddings generated

by RealGen exceed all baseline models in terms of accuracy.

Evaluation of Retrieval Augmented Generation

Evaluating scene-level controllability and quality of scenario generation is an open problem due

to the lack of quantitative metrics. Following most previous work (Feng et al., 2023a; Tan et al.,

2023; Zhong et al., 2023b), we provide the results of the realism metrics and show the qualitative

results of using RealGen for various downstream tasks.

Realism of generated scenario. To evaluate the realism of generated scenarios, we consider

the following metrics and show the results in Table 2.6. We use the maximum mean discrepancy

(MMD) (Gretton et al., 2012) to measure the similarity in velocity and direction between the

original scenarios and the generated scenarios. We also compare the mean average displacement

error (mADE) and the mean final displacement error (mFDE) for the average reconstruction per-

formance. To evaluate scene-level realism, we calculate the scene collision rate (SCR) and the

off-road rate (ORR) following the metrics defined in (Tan et al., 2023). The recon-based gener-

ation methods in Table 2.6 use the behavior of the target scenario as input. For this category, we
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Figure 2.18: Examples of tag-retrieved scenarios generated by RealGen for six different tags.

compare RealGen-AE, only using the encoder and decoder modules, with three baseline meth-

ods. Due to the additional contrastive term, RealGen-AE achieves slightly worse performance

than AE and Masked AE. However, RealGen is designed for retrieval-based generation, which

uses retrieved scenarios rather than the target scenario as input. To fairly compare the genera-

tion performance, we design two baselines named AE-KNN and RealGen-AE-KNN, which use

KNN to find the most similar behavior embedding to the target scenario, and use this embedding

as input to the decoder for generation. According to the results, we find that RealGen achieves

comparable performance as recon-based generation and outperforms baselines, which indicates

the important role of the combiner in fusing the information of the retrieved scenarios.

Generating tag-retrieved scenarios. Now we explore the qualitative performance of using

RealGen for tag-retrieved generation. Given a target behavior tag, we first obtain several template

scenarios from a small dataset and use them to retrieve more scenarios from the training database,

which will be used for generation in the combiner. Since there is no existing dataset with tags,

we manually labeled six tags – U-Turn, Overtaking, Left Lane Change, Right Lane Change,

Left Turn, Right Turn – for the nuScenes dataset to get template 1349 scenarios. We plot the

generated scenarios for each tag in Figure 2.18, where the left part of each example shows the

given initial pose and map, and the right part of each example shows the generated scenario from

RealGen.

Safety-critical scenario generation. Beyond the tag mentioned above, RealGen demon-

strates its capacity for in-context learning by generating critical and unseen crash scenarios,
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Figure 2.19: Examples of generating crash scenarios from RealGen. The shadow rectangles

represent the initial positions of agents.

Table 2.7: Safety-critical scenario generation.

Method Realgen-AE-R RealGen-R RealGen

Collision Rate (↑) 0.92 0.83 0.59

divergent from those of the training datasets. This is initiated by manually creating several crash

scenario templates, guided by the scenarios recorded in the NHTSA Crash Report (NHTSA,

2023). Subsequently, we generate crash scenarios using existing initial poses and maps of the

dataset. Figure 2.19 illustrates six instances in which the shadowed rectangles denote the initial

positions of agents and the red box highlights the point of collision. To quantitatively assess

the performance of safety-critical scenarios, we compare RealGen with two baselines. RealGen-

AE-R random samples behavior embeddings in the Realgen-AE model, and RealGen-R random

retrieves behavior embeddings. According to the results in Table 2.7, we find that the scenar-

ios generated by RealGen using crash scenarios as templates achieve the highest collision rate,

which means that RealGen has more efficiency.

Human evaluation of controllability. As there is no automatic way to evaluate controllabil-

ity, we follow the protocol in (Tan et al., 2023) to perform A / B testing using human evaluation.

For each category of scenarios, we select 10 examples from each generation algorithm. Each

time, we ask a human evaluator to select one image from two images generated from our method
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Table 2.8: Results of human evaluation of controllability.

Category Left-Turn Right-Turn Left-Lane-Change Right-Lane-Change Straight

RealGen Preferred (%) 81.8 91.7 97.8 93.3 100.0
RealGen Score (0-5) 4.27±1.05 4.27±0.69 3.96±1.94 4.17±1.93 3.94±2.27
LCTGen Score (0-5) 2.15±1.44 2.08±1.19 2.42±1.95 2.0±1.96 2.14±2.31

and the baseline. The evaluator should also give a score (0-5) for both images. The final result

is obtained by averaging the feedback from five evaluators. In Figure 2.20, we show some ex-

amples of the scenarios that we used for human evaluation. We report the preferred ratio of our

method, as well as the absolute score (0-5) of both our method and the baseline. In Table 2.8,

we find that RealGen-generated scenarios are highly preferred in most categories. The absolute

score of RealGen is also much higher than that of LCTGen.

Table 2.9: Downstream task evaluation.

Method Original Random Aug. RealGen Aug.

mADE (↓) 3.544 2.920 2.309
collision rate (↓) 0.049 0.037 0.018

Downstream task evaluation. A direct downstream task of our method is to use the gener-

ated data to augment the training dataset of trajectory prediction models. We use Autobots (Gir-

gis et al., 2021) as a predictor and report the results trained on different datasets in Table 2.9.

Original means using the original data in nuScenes (Caesar et al., 2020), Random Aug. means

augmenting the original dataset with Gaussian noise, and RealGen Aug. means augmenting the

original dataset with scenarios from RealGen. We observe that the model trained with the Real-

Gen dataset achieves the lowest mADE and the lowest collision rate.

2.4 Summary

In this chapter, I discuss three of my previous works that use data-driven generative models

to generate critical scenarios (Ding et al., 2023, 2018, 2020a). The success of such generative

models is highly dependent on the enormous amount of data, which is the main reason for their

impressive results in text and image generation. However, for physical-world tasks, such as
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autonomous driving, robotics, and healthcare, the data scarcity problem has not been fully solved.

The framework of using pure data-driven methods to generate critical data implies a chicken-and-

egg paradox, since critical data are rare in the dataset.

Therefore, in the next chapter, I will introduce another framework for generating critical

scenarios, which is based on adversarial optimization. With proper constraints, we can search

for the parameters of scenarios to make the ego agent fail and the optimization does not require

existing data of the critical scenario.
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Figure 2.20: Examples of the scenarios we used for human evaluation of controllability. We used

the map and initial positions of the original image (from nuScenes) to generate new scenarios

using RealGen and LCTGen. We tested five scenario tags.
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Chapter 3

Adversarial Generative Models

The more you sweat in peace, the less you bleed in war.

Norman Schwarzkopf

In this section, we consider a more efficient way for scenario generation, which actively

creates risky scenarios by attacking the AV system. For example, we control a pedestrian to cross

the road and intentionally make it collide with the AV. Although the AV may avoid the collision in

most cases, we can still obtain safety-critical scenarios where accidents occur. This framework,

named adversarial generation, consists of two components, one is the generator and the other is

the victim model, that is, the AV. Then the targeted generation process can be formulated as

θ̂ = argminEpθ(x)[g(x, πe)], (3.1)

where g(·, πe) is a quantitative function to indicate the performance of the policy πe taken by the

AV. We notice that adversarial generation will mainly focus on a specific small set of scenarios;

therefore, it would be good to consider diversity by adding constraint or entropy of the distri-

bution H. Since we consider the influence of AV, this type is named Vehicle-in-the-loop testing

in previous work (Fernández Llorca and Gómez, 2021). Since the autonomous driving system

consists of multiple modules, we divide these methods according to the type of victim models.

When the model is used for single frame inputs, e.g. object detection and segmentation, we only

need to generate static scenarios. When the victim model requires a sequential testing case, we
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generate dynamic scenarios that contain the motion of all objects.

3.1 Generation with Reinforcement Learning

Today, the performance of most perception and prediction algorithms is quite sensitive to the

imbalance of the training data (also known as the long tail problem (Cui et al., 2019; Lee et al.,

2019)). Rare events are often difficult to collect and easily neglected in the huge data flow, which

greatly challenges the real-world application of robots, especially in safety-critical domains, e.g.

autonomous driving.

In the industry, companies usually resort to simulations to reproduce the safety-critical sce-

narios collected during their test driving. One brute-force method is to create risky scenarios

by adjusting all variables in one scenario with the grid search to create similar risky scenarios,

which is time- and labor-intensive. An alternative method known as worst-case evaluation (Kou

et al., 2008) is proposed to search for the worst cases to evaluate controllers in the vehicle field.

Although some cases excavated by worst-case evaluation may be useful, some extremely risky

scenarios are almost impossible to appear in the real world. The algorithms evaluated in these

scenarios may not represent the deployment in the real world. Therefore, other previous works

concentrate on generating risky and reasonable scenarios (Zhao et al., 2017, 2016) with impor-

tance sampling. These works show the possibility of modeling the scenarios with probability

distributions and more efficient sampling from them.

With the recent popularity of deep generative models (Goodfellow et al., 2014; Kingma and

Welling, 2013), another promising way is directly generating safety-critical scenarios instead of

sampling existing data. The advantage of the generative model is that more diverse scenarios,

even open-world scenarios that do not exist in the collected data, could be created. Unfortunately,

the most prevalent deep generative models are not designed for generating rare events. These

models generate random samples that are similar to the given dataset without elaborated explicit

generating processes (Ding et al., 2018), which is not in line with our goal of generating rare and

risky events with extremely low probability.

Another difficulty in generating risk scenarios is finding the appropriate representation, since
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Figure 3.1: Two safety-critical scenarios generated using our method.

scenarios consisting of statistics and dynamic objects, routes, and maps are difficult to model. A

low-dimensional and easy-to-sample representation would dramatically increase the efficiency

of generating new scenarios.

To address such challenges, we propose to combine the task algorithm and the data genera-

tion model in this work. Two generated scenario examples are shown in Figure 3.1. First, we

use a factorized graphic model to represent the traffic scenario, which is inspired by (Wheeler

and Kochenderfer, 2016) and (Wang et al., 2018). The motivation is to integrate human knowl-

edge to create scenarios by factorizing the scenarios into (independent) conditional probabilities.

We refer to probabilities as the building blocks in this work since they could be shared among

different scenarios. Using this graphic model allows us to generate new scenarios by sampling

the distributions according to the dependence relationship. These building blocks vary the initial

parameters to cover a wide range of scenarios, which was shown to be an effective method for

modeling transportation (Wheeler and Kochenderfer, 2016). After representing the scenario, we

consider the generative model as an agent (or a generator) and regard one specific task algorithm

as the environment (or a discriminator). The parameters (e.g. target speed) and the route of

the task algorithm will be used as input states for the agent. The riskier the scenario the agent

generates, the higher the reward it receives. We sample the input states from a uniform distribu-

tion during model training. Therefore, given a specific task algorithm, our proposed framework

adaptively generates safety-critical scenarios for different routes and input parameters, even for

settings that are not seen in the training stage.

In summary, this method makes three contributions to the autonomous driving safety litera-

ture:
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• We develop a framework to generate traffic scenarios by sampling from the joint distribu-

tions of autoregressive building blocks.

• We design an algorithm that uses the task module to guide the generation module for

generating safety-critical scenarios.

• Autonomous driving researchers can use scenarios to evaluate the safety of driving algo-

rithms. The method could be extended to create test scenarios for other types of robots.

3.1.1 Representing scenario with Probabilistic Models

Most traffic scenarios could be divided into several building blocks, e.g., location, orientation,

and velocity of traffic participants (Kar et al., 2019). Mathematically, we use a probability

graphic model to represent a scenario in which each node represents a building block.

The most intuitive way to model the scenarios is using an undirected graph like (Wheeler and

Kochenderfer, 2016) when we have no information about the elements in the scenario. We use a

joint probability p(x1, x2, ...xn) to represent one scenario, where xi is the distribution of setting

parameters, such as the orientation or speed of a cyclist. Then, we represent the scenario with an

undirected graph G:

p(x1, ..., xn) =
1

Z

∏
v∈V

Ψ(xv), (3.2)

where V indicates all nodes in the graph G and Ψ(·) is the potential function to describe the

correlation associated with the nodes of G. Z is the partition function that ensures that the

representation satisfies the probability requirement. The drawbacks of this representation are

two-fold: (1) Z is usually intractable because it requires the integration of all latent variables,

and (2) Ψ(xc) is difficult to define. Therefore, we simplify this representation to a directed graph

H by introducing human knowledge:

p(x1, ..., xn) =
∏
i∈V

p(xi)
∏
j∈V

p(xj|xPAi(G)j), (3.3)

where PAi(G)j is the set of parents of j. The first production in (3.3) represents the independent

building blocks, while the second production usually represents the blocks with an autoregressive
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Figure 3.2: One example of converting an undirected graphic model to a directed one with human

knowledge.

lX

θ
X(s , s )Y
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route

Figure 3.3: Explanation of the nodes in Fig .3.2. The scale and shift parameters in (3.8) are also

shown in this figure.

structure. The autoregressive structure means that several nodes {v0, ..., vg} ∈ V form a specific

group with the following relation:

p(xj|x0, ..., xj−1), ∀ j ∈ {1, ..., g}. (3.4)

Human knowledge of traffic scenarios could help with factorizing the graph and designing the

relation among all blocks.

A factorization example is shown in Figure 3.2 and an example of this graph is explained in

Figure 3.3. In this scenario, we want to generate one cyclist and move it when the AV reaches the

trigger distance to the cyclist. We define four nodes to represent the scenario: generate position

(X, Y ), orientation (θ), and trigger distance (D). (S) represents the input states, such as the route

the AV will follow and its target speed. The factorized result shown on the right of Figure 3.2 is
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the same as:

p(X, Y, θ,D|S) = p(X|S)P (Y |S)p(θ|S,X, Y )p(D|S,X, Y, θ). (3.5)

The reason for the simplification is that the orientation of the cyclist only depends on the

position of the spawn point, given that we want to make the cyclist collide with the AV. For the

trigger distanceD, it is a conditional probability that depends on the value of the position and the

orientation of the spawn point. We only adopt one reasonable representation according to prior

knowledge, although there could be other reasonable ways.

In this method, we focus more on critical scenarios that have few participants, e.g., one AV

and one dynamic obstacle. However, complex scenarios in the real world can involve hundreds

of vehicles and pedestrians, which is challenging to represent with this method. In those cases,

we may need to divide the nodes into groups and model the scenario with groups rather than

nodes. This is still an unsolved problem that needs to be studied in the future.

In our implementation, we use the Gaussian distributionN (µ, σ) to model continuous blocks

and the multinomial distribution to model the discrete ones. Neural networks (NNs) are used for

conditional probability inference. The reparameterization trick (Kingma and Welling, 2013) is

used to perform the sampling with backpropagation:

µk, σk ←Mk(S, ak−1), (3.6)

ak = µk + σk × ϵ, ϵ ∼ N (0, 1), (3.7)

where ak is the action sampled from the k-th node. Mk is the model that represents the condi-

tional distribution of the k-th action. Then ak needs to be rescaled and shifted to represent the

parameter of the real-world scenario:

bk = ak × lk + sk, (3.8)

where lk and sk are the range and average value of the k-th action, respectively. We note that bk

will be truncated if its value is beyond the range boundary.
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Figure 3.4: The proposed framework (left) and the structural details (right). Our model consists

of two parts: the state module and the action module, both of which are implemented with linear

layers.

3.1.2 Learning to Collide (L2C)

We have shown our proposed framework in Figure 3.4. We first introduce how we represent the

scenario generation process (right part of Figure 3.4), then describe the pipeline of our model

and the training procedures (left part of Figure 3.4).

Scenario generation framework

With the language of reinforcement learning, we regard the aforementioned scenario generation

model as an agent, and the full-stack AV algorithm to be evaluated as an environment. Our goal

is to obtain a safety-critical scenario generation model.

The state of the environment has two parts. The first part contains information on route η,

which is the reference trajectory for the task algorithm, and the road map with lane informa-

tion. The second part consists of several parameters of the task algorithm ξ, which influence the
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Algorithm 3: Training Procedure of Proposed Framework
1 Initiate max epoch number E
2 Initiate rewards rb, rp
3 Build the modelM with (3.3) and initiate parameters ϕ
4 for e← 1 to E do
5 for i← 1 to N do
6 Sample route from the distribution ξ(i),η(i) ∼ S

7 Get scenario parameters a(i)←M (ξ(i), η(i); ϕ)
8 ρAV , ρo← Simulator (ξ(i), η(i), a(i))
9 R(i) = −rd(ρAV , ρo) + rb − rp

10 ∇ϕJ (ϕ) = 1
N

∑N
i ∇ϕ log(πϕ)R(i) − λH(πϕ)

11 ϕ = ϕ− α∇ϕJ (ϕ)

decision-making ability of the AV. One simple example is the target speed, which our generative

model needs to consider to adjust the position of the obstacles.

The reward function consists of three parts:

R = −rd(ρAV , ρo) + rb − rp(ρo, γ), (3.9)

where ρAV and ρo represent the positions of the AV and the obstacle (the cyclist in our experi-

ments), respectively. The first term is the risk metric rd, in which we use the distance between

the obstacle we generated and the AV to represent:

rd(ρAV , ρo) = ∥ρAV − ρo∥2. (3.10)

In the simulation, the distance between two rigid objects is always larger than 0, which means

the distance cannot be used to represent the collisions. Therefore, we will provide the agent an

extra bonus rb if a collision happens:

rb =

Rb, collision = True,

0, collision = False.
(3.11)

Finally, we use a penalty rp to avoid a special case in which obstacles are spawned too close

to the route, which is not a reasonable scenario. We use a threshold γ to determine whether this
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Table 3.1: Hyper-parameters in our experiments

Hyper-parameter Description Value

E max epoch number 100
α learning rate 0.008
N batch size 16
λ weight for policy entropy 0.001

Rb reward of collision bonus 10
Rp penalty of route occupy 20
γ threshold in rp 3

sX average value of X 0
sY average value of Y 0
sθ average value of θ 180
sD average value of D 20
lX scale of action X 100
lY scale of action Y 18
lθ scale of action θ 360
lD scale of action D 40

hs # of variable in state module 64
ha # of variable in action module 32

penalty is implemented:

rp =

Rp, ∥ηi − ρo∥2 < γ ∀i

0, otherwise
. (3.12)

where ηt is the i-th route waypoint.

Optimization process

We follow the policy gradient method REINFORCE (Williams, 1992) to solve our optimization

problem. The gradient for updating model parameter ϕ is:

∇ϕJ (ϕ) = Ea∼πϕ [∇ϕ log(πϕ)]R(a) ≈
1

N

N∑
i

∇ϕ log(πϕ(ai))R(ai), (3.13)

where J (ϕ) = Ea∼πϕ [R] is the objective function, and a is the action sampled from the policy

distribution πϕ. To encourage the diversity of the policy, we add an entropy term to the objective
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function as proposed in (Haarnoja et al., 2018):

H(πϕ) = −
∫
πϕ(x) log πϕ(x)dx. (3.14)

When we use an autoregressive Gaussian distribution to model the policy πϕ, we are still able

to calculate the joint probability with the chain rule:

logP (π) = logP (π0) +
n∑
i=1

logP (πi|π0, ..., πi−1), (3.15)

where each term is calculated according to the density function of Gaussian distribution. The

entropy is also easy to calculate, since the joint distribution is still a Gaussian distribution. The

entire algorithm is shown in Algorithm 3.

3.1.3 Experiment and Analysis

Experimental settings

We implemented our algorithm with Pytorch (Paszke et al., 2019) and used Adam (Kingma and

Ba, 2014) as the optimizer. Details about the hyperparameter of our experiments are listed in

Table 3.1. We use Carla (Dosovitskiy et al., 2017) as our simulation platform, and we use Carla

ScenarioRunner as the backbone to generate traffic scenarios. We modify the Scenario04 and

use it as our testbed to evaluate our framework. The description of the setting of this scenario is

discussed in Section 3.1.1.

The AV algorithm to be evaluated is a simple trajectory that follows a model with a PID

controller. we use the visualization and debugging tool CarlaViz, which is an open source tool

developed by our group. We use a single fully connected layer to build our state and action

modules, and the number of hidden variables is summarized in Table 3.1.

Verification experiment

We conduct a verification experiment to show that our proposed framework can generate risky

scenarios. We trained our model on 10 different routes and randomly sampled target speeds from
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Figure 3.5: Learned distributions of scenario parameters with different routes.

Figure 3.6: Examples of conditional distribution p(θ|X = x, Y = y, S = s).

20km/h to 50km/h. Then we test this model on 4 different routes and the results are displayed

in Figure 3.5. It is shown that our model outputs different policies when different routes and

speeds are fed in. For left-turn scenarios, the distributions of the positions fall to the left of the

intersection; and for right-turn scenarios, the distributions are on the right. We note that the high

probability regions are exactly the riskiest ones a human driver will encounter in reality, i.e., the

driver tends to ignore these blind spots when passing through these intersections.

To verify the contribution of our autoregressive structure, we sample different initial positions

(x and y) from p(X|S) and p(Y |S) and use them as conditions to obtain the orientation output

p(θ|X = x, Y = y, S = s). The results are shown in Figure 3.6. As expected, when different x

and y are used as conditions, the orientation is quite different, which proves that our model can

learn the dependencies between different policies.

Comparison experiment

In this section, we construct four baselines for comparison:
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Figure 3.7: The results of the collision rate and the number of iterations required to reach stability.

Grid Search. This is the easiest way to search for risk scenarios. Since we need to consider

the combinations of all policies, the search space could exponentially grow as the dimension of

scenario representation increases. To reduce the searching expense, we discretize the policies by

steps [4, 3, 20, 10] for [X , Y , θ, D] and search all combinations to solutions.

Human Design. The Carla Scenario Runner Library is used for artificially creating scenar-

ios in Carla Autonomous Driving Challenge. This competition aims to test and evaluate AV

algorithms in risky scenarios. We use the same parameters and procedures of the testbed of this

competition as our baseline.

Random Sampling. In this baseline, we sample all policies from the uniform distribution.

This method is designed to simulate the methods that are not combined with task algorithms, in

which case only random scenarios are generated.

Independent Policy. This method is almost the same as our proposed one. The only differ-

ence is that we treat all policies as independent blocks, i.e., each policy is modeled by a Gaussian

distribution only conditioned on the state S.

We used two metrics for comparison: the collision rate after the model achieved a stable

policy and the number of iterations required for the model to reach stability. We conducted 30

experiments on each method with different routes and target speeds. The experimental results

are shown in Figure 3.7.

The results of the collision rate show that the human design method has very poor adapt-

ability (large variance) because the artificially designed parameters are only useful when the AV
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Figure 3.8: Generated safety-critical scenarios using our method.

algorithm satisfies some conditions, e.g. the target speed belongs to a specific region. For the

random sampling method, the low rate is in line with our expectations, since there is no guid-

ance to help generate risky scenarios. The independent method has a slightly lower collision rate

than our method because the independence among the actions makes the generating process very

inefficient. Decoupling the policies may cause the loss of some constraints.

The results of the time cost show that the Independent Policy method requires more time to

reach the stable state than our method because the variance of each policy could influence other

policies, making the training process unstable. Even if we have selected large steps to discretize

the space (leading to very few collision scenarios), the grid search method still requires too much

time.

In Figure 3.7, all results have a variance with the exception of the grid search because, for

different routes or target speeds, the search process must be carried out from scratch, which is

a huge drawback of the grid search method. All of the other methods are adaptive to generate

different risky scenarios according to the input states. The lower the variance, the more adaptive

the method is.

Results of Other Scenarios

We tested three other scenarios to verify the effectiveness of our method. We chose these scenar-

ios because they all cause millions of losses every year according to the report on pre-crash sce-
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narios from the National Highway Traffic Safety Administration (NHTSA) (Najm et al., 2007).

Opposite Vehicle Running Red Light. The ego vehicle passes through an intersection along

a straight route, while another vehicle takes priority over the ego vehicle running a red traffic

light. The action space has three dimensions: position X , position Y , and speed V . The orienta-

tion of the other vehicle is fixed in this scenario.

Unprotected Left Turn. The ego vehicle turns left, while another vehicle approaches from

the opposite direction. To avoid a collision, the ego vehicle should wait for the other vehicle or

accelerate to cross the intersection. The action space has the same three dimensions as the last

scenario.

Signalized Junction Right Turn. The ego vehicle turns right, while another vehicle ap-

proaches from the left. The action space has the same three dimensions as the last scenario.

The risk scenarios generated with our framework are shown in Figure 3.8. As shown in the

figure, in all three new scenarios, our method also finds the risky distributions of all building

blocks.

Exploration of Solution Space

We explore the solution space of the risky scenario parameters. Six different stable solutions

during our experiments are shown in Figure 3.9. All of them are initialized with different values.

Although we model the solution with Gaussian distributions, the solution space may not be a

convex set, even not only have one mode. For example, both sides of the route should be feasible

solutions, but using the REINFORCE algorithm with Gaussian policies only models a subspace

of the entire solution space.

In our future work, one possible improvement is separating the action space and the scenario

representation space. While the action space is still modeled by the Gaussian distribution, the

scenarios are modeled with implicit and complex distributions. Tools such as VAE (Kingma and

Welling, 2013) and flow-based models (Kingma and Dhariwal, 2018) could be used to build a

mapping from a simple Gaussian distribution to a complex distribution. Then a joint optimization

of the mapping model and the generative model should be done to achieve our goal.
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Figure 3.9: The training results have large diversity since the feasible solution is a continuous

space rather than a single point.

3.2 Diverse Scenario Generation with Adaptive Sampler

Robustness and safety are crucial factors in determining whether a decision-making algorithm

can be deployed in the real world (Fryman and Matthias, 2012). However, most of the data

collected from simulations or in the wild are skewed to redundant and highly safe scenarios,

which leads to the long tail problem (Cui et al., 2019). Furthermore, a self-driving vehicle

has to drive hundreds of millions of miles to collect safety-critical data (Kalra and Paddock,

2016), resulting in expensive development and evaluation phases. Meanwhile, a large number of

safe Reinforcement Learning (RL) algorithms (Garcıa and Fernández, 2015) have recently been

proposed, yet the evaluation of these algorithms uses mostly uniform sampling scenarios, which

have been proven to be insufficient due to the poor coverage of rare risky events.

The adversarial attack (Chen et al., 2017b; Nazemi and Fieguth, 2019) is widely used to

obtain specific examples when assessing the robustness of the model. This method only addresses

extreme conditions, and thus it does not provide comprehensive performance evaluations of the

system. Researchers (Fawzi et al., 2018; Shafahi et al., 2018) point out that there will always be

loopholes in a neural network (NN) that can be attacked, hence testing at different stress levels is

considered to provide more information about the robustness of the system. On the other hand,
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Figure 3.10: An example of multimodal safety-critical driving scenario.

although the perturbation is limited during the attack, there is no guarantee that the obtained

samples will occur in the real world. It is a waste of resources to request robots to pass the tests

that are unlikely to happen in practice.

Real-world scenarios are complicated with a huge number of parameters, and risk scenarios

do not always occur within certain modalities (Yan et al., 2019). The multimodal distribution is a

more realistic representation, for example, accidents could occur in different locations for a self-

driving car, as shown in Figure 3.10. Although previous work (Ding et al., 2020b; Kuutti et al.,

2020) tried to search for risk scenarios in the RL framework, they only used the single-mode

Gaussian distribution policy, leading to overfitting and unstable training problems. Covering

diverse testing cases provides a more accurate comparison of algorithms. Even if a robot overfits

one specific risk modality, it will fail to handle other potential risk scenarios. To our knowledge,

few people have explored multimodal estimation of safety-critical data.

In this work, we use a flow-based generative model to estimate the multimodal distribution of

safety-critical scenarios. We use the weighted maximum likelihood estimation (WMLE) (Wang,

2001) as the objective function, where the weight is related to the risk metric so that the log-

likelihood of the sample will be approximately proportional to the risk level. We treat the algo-

rithm that we want to evaluate as a black box and then get the risk value through the interaction

with the simulation environment. To increase the generalization of generated scenarios, our gen-

erator also has a conditional input, so that the generated samples will be adaptively changed

according to the characteristics of the task.
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We model the whole training process as an on-policy optimization framework that shares

the same spirit as the Cross-Entropy Method (CEM) (Rubinstein and Kroese, 2004), and we

propose an adaptive sampler to improve sample efficiency. In this framework, we can dynami-

cally adjust the region of interest of the sampler according to the feedback of the generator. The

adaptive process is guided by the gradient estimated from the Natural Evolution Strategy (NES)

method (Wierstra et al., 2014). During the training stage, the sampler focuses on the unexplored

and risky areas and finally completes the multimodal modeling. We also consider the distribution

of real-world data when designing the risk metric to ensure that the generated data have a high

probability of occurrence in the real world.

We carried out extensive experiments on the decision-making task of autonomous driving in

an intersection environment. A safety-critical generator is trained, analyzed, and compared with

traditional methods. Our generator outperforms others in terms of efficiency and multimodal

coverage capability. We also evaluate the robustness of several RL algorithms and claim that our

generator is more informative than the uniform sampling methods. In summary, the contribution

is three-fold:

• We propose a multimodal flow-based generative model that can generate adaptive safety-

critical data to efficiently evaluate decision-making algorithms.

• We design an adaptive sampling method based on black-box gradient estimation to im-

prove the sample efficiency of multimodal density estimation.

• We evaluated a variety of RL algorithms with our generated scenarios and provided em-

pirical conclusions that can help design and develop safe autonomous agents.

3.2.1 Flow-based Models

The variable x ∈ X represents parameters that build a scenario, for instance, the initial position of

a pedestrian or the weather conditions in the self-driving context. The variable y ∈ Y represents

the properties of the task, such as the target position or the target velocity. π(a|x, y) is the task

algorithm that takes the scenario x and the task condition y as input and outputs an action a ∈ A.

With a risk metric r : X × A → R, each scenario corresponds to a value that indicates safety
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Figure 3.11: Diagram of proposed framework. The modules that have learnable parameters are

shown in blue.

under π.

Instead of exploring extreme scenarios that produce low r(x|y) as in an adversarial attack

field, we aim to estimate a multimodal distribution p(x|y) where the log-likelihood is propor-

tional to the value of the risk measure. Then we can efficiently generate scenarios that have

different risk levels by sampling from p(x|y). The condition y follows the distribution p(y). A

sampler π(x|y) is used to collect training data. We also assume that real-world data of simi-

lar scenarios is accessible and has a distribution q(x). The pipeline of our proposed evaluation

method is shown in Figure 3.11. We explain the details of three learnable modules in the follow-

ing sections.

3.2.2 Multi-modal Generation (MMG)

Pre-trained Prior Model

Firstly, we consider the probability that each scenario happens in the real world to make the result

practical. For that, we pre-train a generative model q(x;ψ) to approximate the distribution of the

real data D. The objective of the training is to maximize the following log-likelihood:

ψ̂ = argmax
ψ

Ex∼D log q(x;ψ). (3.16)

We select RealNVP (Dinh et al., 2016), a flow-based model, to implement q(x;ψ) for exact

likelihood inference. In a flow-based model, a simple distribution q(z) is transformed into a

complex distribution p(x) by the change of the variable theorem. Suppose that we choose z ∼
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N (0, 1) to be the simple distribution. Then we have the following equation to calculate the exact

likelihood of x:

q(x) = q(z)

∣∣∣∣∂z∂x
∣∣∣∣ = p(f(x))

∣∣∣∣∂f(x)∂x

∣∣∣∣ , (3.17)

where we have an invertible mapping f : X → Z . For more details on the flow-based model,

refer to (Dinh et al., 2016).

After training, scenarios can be generated by x = f−1(z) where z is sampled from N (0, σ).

A smaller σ will make the samples more concentrated, therefore, the generated scenarios will

have a higher likelihood. Since our model is trained with WMLE, the high-likelihood samples

are also corresponding to high risk.

Multu-modal Generative Model

We formulate the safety-critical data generation as a density estimation problem. The tradi-

tional way to estimate the multimodal distribution p(x|y) using a deep generative model is to

maximize the likelihood of data. To integrate the risk information, we solve the problem using

WMLE (Wang, 2001). For one data point xi, we have:

L(xi|yi; θ) = p(xi|yi; θ)w(xi), (3.18)

logL(xi|yi; θ) = w(xi|y) log p(xi|yi; θ), (3.19)

where w(xi) is the weight and p(xi|yi; θ) is our generator with learnable parameter θ, corre-

sponding to the i-th data point. Assuming that we have a sampling distribution π(x|y) of x, then

our objective is:

θ̂ = argmax
θ

Ex∼π(x|y),y∼p(y) logL(x|y; θ). (3.20)

The definition of w(x|y) is relevant to both r(x|y) and q(x;ψ):

w(xi) = r(xi|y) + βq(xi;ψ), (3.21)

where β is a hyperparameter to balance r(x) and q(x;ψ).
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Figure 3.12: An illustration example of multi-modal estimation using the uniform sampler.

Figure 3.13: An illustration example of multi-modal estimation using the generator.

We implement p(x|y; θ) using a modified flow-based model that has a conditional input (Win-

kler et al., 2019). Suppose y ∈ Y is the conditional input, then the mapping function should be

f : X × Y → Z and (3.17) will be rewritten as:

p(x|y) = p(f(x|y))
∣∣∣∣∂f(x|y)∂x

∣∣∣∣ . (3.22)

Adaptive Sampler

The uniform distribution is a trivial choice for π(x|y) in (3.20) to search the solution space.

However, uniform sampling is inefficient in a high-dimensional space, especially when risky

scenarios are rare. Therefore, we propose an adaptive sampler that takes advantage of gradient

information to gradually cover all modes of risky scenarios. Suppose that we have a metric c(x|y)
that indicates the exploration value: the higher c(x|y), the more worth exploring x. We then use

NES, a black-box optimization method, to estimate the gradient of c(x|y). The sampler π(x|y)
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Figure 3.14: An illustration example of multi-modal estimation using our adaptive sampler.

then follows the generating rule (we omit y in gradient derivation):

xt+1 ← xt + α∇xc(x
t), (3.23)

where α is the step size. The gradient∇xc(x
t) in (3.23) can be estimated by:

∇xc(x
t) = ∇xEx∼N (xt,σ2I) [c(x)] =

1

σ
Eϵ∼N (0,I)

[
ϵ · c(xt + σϵ)

]
. (3.24)

In practice, we will approximate the above expectation with the Monte Carlo method:

∇xc(x
t) =

1

σ

M∑
i=1

ϵi · c(xt + σϵi), ϵi ∼ N (0, I). (3.25)

The design of c(·) strongly influences the performance of the adaptive sampler. Inspired by

some curiosity-driven literature (Pathak et al., 2017), where uncertainty, Bayesian surprise, and

prediction error are used to guide exploration, we choose a metric that involves the generative

model p(x|y):
c(x|y) = r(x|y)− γ · p(x|y; θ), (3.26)

where γ is a hyperparameter that balance r(x) and p(x|y; θ). Intuitively, when one mode (some

similar risky scenarios) is well learned by p(x|y; θ), the metric c(x) will decrease and force

the sampler to explore other modes. Finally, the multimodal distribution will be captured by

p(x|y; θ). An example of the sampling process is shown in Figure 3.14 with a Gaussian Mixture

Model (GMM) distribution. For intuitive understanding and comparison, we also show the sam-
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pling process of using a uniform sampler and the learned generator as the sampler in Figure 3.12

and Figure 3.13, respectively.

3.2.3 Experiment and Analysis

In this section, we first demonstrate the advantage of our proposed adaptive sampler with a toy

example. After that, we show the generated safety-critical scenarios with different settings in an

intersection environment. Finally, we evaluate the robustness of several popular RL algorithms

using our generated scenarios and provide conclusions about their robustness.

Efficiency of Adaptive Sampler

We first conduct experiments to evaluate the efficiency of the proposed adaptive sampler.

Environment settings. As discussed in Section 3.2.2, we shall expect that the estimated

gradient of c(x|y) improves the efficiency of the sampling procedure. To assess this, we compare

our method with two baselines in a GMM example. In the first baseline, we use c(x) = r(x), a

straightforward and common choice in the adversarial attack literature. In the second baseline,

we use the variance of the posterior of Gaussian Processes (GP) (MacKay et al., 1998) to model

the uncertainty of search space and combine this uncertainty with r(x).

Explanation: The comparison results is displayed in Figure 3.15. Both two baselines are

facing the mode collapse problem to varying degrees, while our method effectively covers all

modes. The reasoning is as follows. The first baseline uses only limited information about the

multimodal landscape and thus is easily trapped into one modality. The second baseline, which

gradually decreases the importance of the explored points, can cover all modes even other unim-

portant points. However, the rapidly descending uncertainty and the lack of adaptivity to the

generator p(x) lead to suboptimal results and unbalanced data collection. Our proposed method

uses the feedback of the generator that gives the sampler both the capability of uncertainty ex-

ploration and balanced data collection, hence attaining all the modalities.
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Figure 3.15: A toy example to compare different adaptive samplers.

Figure 3.16: Samples from prior model q(x) that is learned from InD dataset (Bock et al., 2020).

Different colors represent different velocity angles.
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Safety-critical Scenario Generation

In the following, we provide an evaluation and analysis of the results of the generation of safety-

critical scenarios.

Environment settings. An intersection environment is used to conduct our experiment on

the Carla simulator (Dosovitskiy et al., 2017). We represent the scenario as a 4-dimensional

vector x = [xs, ys, vsx, v
s
y], which represents the initial position and initial velocity of a cyclist.

The cyclist is spawned in the environment and travels at a constant speed. Then we place an

ego vehicle controlled by an intelligent driver model. The reference route of the ego vehicle is

represented by the condition y. The minimal distance between the cyclist and the ego vehicle is

used to calculate r(x):

r(x) = exp{−∥pv − pc∥2}, (3.27)

where pv and pc represent the position of the vehicle and the cyclist respectively. A lower distance

corresponds to a higher r(x). This scenario is defined as a precrash scenario in (Najm et al., 2007)

and also adopted in the Carla Autonomous Driving Challenge. This setting allows us to test

the collision avoidance capability of decision-making algorithms H . Note that more intelligent

algorithms can replace the current agent during the evaluation stage.

Real-world data distribution. There are numerous datasets collected in the intersection

traffic environment. We train our prior model q(x) with trajectories from the InD dataset (Bock

et al., 2020). A well-trained prior model can be used to infer the likelihood of a given sample

and generate new samples as well. We display the position and velocity direction of some gen-

erated samples in Figure 3.16. These samples roughly describe the distribution of a cyclist in an

intersection.

Generated scenarios display. We train a generator p(x|y) to generate safety-critical scenar-

ios given the route condition y. In Figure 3.17, we compare the samples from two generators:

one does not use prior (middle row) and the other uses q(x) as the prior model (bottom row),

where the same color map is used as in Figure 3.16. The top row of Figure 3.17 shows the

collected scenarios by our adaptive sampler. Each of these samples is corresponding to a risk

value that is not shown in the figure. In Figure 3.17, it is shown that without real-world data
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prior, the generator learns the distribution of all risky scenarios collected by the adaptive sampler

(first row). After incorporating the prior model (samples are shown in Figure 3.16), the generator

concentrates more on the samples that are more likely to happen in the real world. This results

in the removal of samples that have opposite directions to the real data.

Baseline and metric settings. We select seven algorithms as our baseline. The details of

each algorithm are discussed below:

• Grid Search: We set the search step for all parameters to 100. Since x has four dimensions,

all search iterations should be 108.

• Human Design: We use the rules defined in Carla Autonomous Driving Challenge, which

trigger the movement of the cyclist according to the location of the ego vehicle.

• Uniform Sampling: The scenario parameter x is uniformly sampled from the entire space.

This method is widely used in the evaluation of safety decision-making algorithms. For

instance, obstacles are generated randomly to test the performance of collision avoidance

in the Safety-Gym environment (Ray et al., 2019).

• L2C (Ding et al., 2020b): This method uses the REINFORCE framework with a single

Gaussian distribution policy. This kind of policy can only represent a single modality.

• L2C+GMM: The policy distribution of (Ding et al., 2020b) is replaced by a GMM. The

purpose is to explore the multimodal capability of the REINFORCE algorithm.

• Ours-Uniform: We replace the adaptive sampler in our method with a uniform sampler.

• Ours-HMC: We replace the adaptive sampler in our method with an HMC sampler to

explore the efficiency of the gradient-based MCMC method.

We use query time and collision rate as our metrics. The query time means the number of

queries to the simulation during the training stage. Methods without training have 0 query times.

A rough value is recorded when the distribution of the samples is stable. The second metric is

the collision rate, which is calculated after the training stage. We sample 1000 scenarios for 10

different routes and get a collision rate for each route. We then calculate the mean and variance

on the ten routes.

Comparison with baseline methods. The results are shown in Table. 3.2. The grid search is
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Figure 3.17: Distributions of safety-critical scenarios represented by x = [xs, ys, vsx, v
s
y].
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Figure 3.18: Relationship between risk and log-likelihood of p(x).

the most trivial way comparable to our method of finding multimodal risk scenarios. However,

the query time grows exponentially as the dimension of x and the step size increase. In simula-

tion, human design is a possible way to reproduce the risk scenarios that occur in the real world,

but these scenarios are fixed and do not adapt to changes in the task parameters y, leading to a low

collision rate. Our experiment also found that the uniform method achieves a collision rate less

than 10%. In dense reward situations, uniform sampling could be a good choice, while in most

real-world cases, the rare event risk scenarios make this method quite inefficient. REINFORCE-

Single searches the risk scenario in the RL framework (Ding et al., 2020b). Although this method

converges faster than ours, it cannot handle multimodal cases with a single Gaussian distribution

policy. The REINFORCE-GMM method extends the original version with a multimodal policy

module. However, it has similar results as REINFORCE-Single. The reason is that the on-policy

sampling method in REINFORCE is easy to trap into a single modality, even if the policy itself

is multimodal. The final weight in GMM is highly imbalanced and only one component dom-

inates. The ablation study reveals that our adaptive sampler (Ours-Adaptive) is more efficient

than the uniform version (Ours-Uniform). The MCMC version (Ours-HMC) requires less query

time than our adaptive sampler, while its samples only concentrate on one modality.

Relationship between risk level and log-likelihood. Since our generator is trained with

WMLE, we make use of all collected samples rather than only the risky ones as in (Norden

et al., 2019). We compare two generators that are trained with MLE and WMLE and plot the

results in Figure 3.18. The generator trained with MLE by only using the risk data concentrates
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on the high-risk area, while our WMLE generator has a linear relationship between the risk and

log-likelihood. Therefore, our generator can not only generate risky scenarios but also generate

scenarios with different risk levels by considering the likelihood of samples.

Evaluation of RL algorithms

To prove that our generated scenarios help improve algorithm evaluation, we implemented six

popular RL agents (DQN (Mnih et al., 2013), A2C (Mnih et al., 2016), PPO (Schulman et al.,

2017), DDPG (Lillicrap et al., 2015), SAC (Haarnoja et al., 2018), Model-based RL (Kaiser et al.,

2019)) asH(µ|x, y) on the navigation task in the aforementioned environment. The agent’s target

is to arrive at a goal point [xg, yg] and avoid reaching the non-driving area. At the same time, we

place a cyclist at the intersection to create a traffic scenario. Finally, the state of the agent is

s = [xg, yg, xa, ya, vax, v
a
y , x

s, ys, vsx, v
s
y], (3.28)

where [xa, ya, vax, v
a
y ] and [xs, ys, vsx, v

s
y] represent the position and velocity of the agent and the

cyclist, respectively. Agents should also avoid colliding with the cyclist; otherwise they will

receive a penalty. The reward consists of three parts:

R(x) = rg + rs × 1s(x) + rc × 1c(x), (3.29)

where rg is calculated by the reduction of distance between the agent and the goal, rs and rc

indicate the penalty of non-driving area violation and cyclist collision. 1s(x) and 1c(x) are two

indicator functions that equal to 1 when the two events occur. The episode ends when the agent

collides with the cyclist or when the agent reaches the target. We implement DQN and A2C on

a discrete action space with a controller that follows a pre-defined route. Their action space only

influences the acceleration. The other agents have a continuous action space that controls the

throttle and steering.

We have two environments for training and testing: 1) Uniform Risk Scenarios (URS): the

initial state x of the cyclist is uniformly sampled; 2) Generated Risk Scenarios (GRS): the initial

state x is sampled from our generated p(x|y; θ) with σ = 0.2. We train and test six RL algorithms
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Table 3.2: Performance Comparison

Methods Queries (↓) Collision Rate (↑)
Grid Search 1× 108 100%

Human Design - 35%± 21%
Uniform Sampling - 9%± 1%

L2C-Single (Ding et al., 2020b) 1× 103 97%± 2%
L2C-GMM (Ding et al., 2020b) 1× 103 98%± 1%

Ours-Uniform 1× 105 100%
Ours-HMC 1× 103 100%

Ours-Adaptive 3× 103 100%

with different environments and Figure 3.19 displays the testing reward and the testing collision

rate. Based on the comparison between different settings, we draw three main conclusions.

More informative evaluation (Column 1 vs. Column 2): Agents tested on URS have

similar final rewards and collision rates. These nearly indistinguishable results make it difficult

to compare the robustness of different algorithms. In contrast, the results on GRS show a great

discrepancy, which helps us to obtain clearer conclusions.

Generalization of agents (Column 1 vs. Column 3): We train the agents on URS and GRS

but test them both on URS. We notice that the performance of both settings is similar, which

means that all agents do not sacrifice their generalization to URS.

Robustness of different agents (Column 2 vs. Column 4): The expected results should be

that all agents have an improvement in column 4. However, we notice that different algorithms

still show different robustness because of their mechanisms. We roughly divide the six algorithms

into three categories and explain them, respectively. 1) Much improved: MBRL is robust to the

risk scenario, even if it is not trained on GRS. The reason is that the target of MBRL is to learn

a dynamics model and plan with it. Even if it is trained on normal scenarios, it learns how to

predict the trajectory of the cyclist. Then, when tested in risky scenarios, MBRL can easily avoid

collisions. Training in GRS will not improve it. 2) Improved a little: DDPG, DQN, and SAC

slightly improve performance. From the bottom figure of column 4, we notice that the collision

rates first increase but quickly decrease, which means they learn how to deal with most of the risk

scenarios. However, their rewards are lower than MBRL because they cannot handle all risky

scenarios. The explanation for the little improvement is that these are off-policy methods with
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Figure 3.19: Testing reward and testing collision rate in four different settings.

memory buffers. The average of stored risky scenarios from the buffer makes the training stable

and, therefore makes the agents successfully handle the scenarios they have met. However, they

still fail in some unseen risky scenarios. 3) Not Improved: PPO and A2C are on-policy methods,

which learn the policy according to current samples. However, the risky scenarios cause the

instability of training, because our generator finds different modes (types) of risky scenarios. In

contrast, a normal scenario will not cause such a problem because the state of the cyclist does

not have much influence. In column 4, the collision rates of PPO and A2C gradually increase

and never decrease, which means that they cannot handle risky scenarios.

Note that the above empirical conclusions might only be valid in this environment. A further

comparison of these RL algorithms should be carefully designed in multiple other settings. Nev-

ertheless, our generator is indeed proven to be more insightful than the uniform sampler. Beyond

RL algorithms, our proposed generating framework can also be used to efficiently evaluate other

decision-making methods developed to deal with more risky scenarios.
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3.3 Summary

In this chapter, two works that use an adversarial generation framework to design critical sce-

narios (Ding et al., 2021a, 2020b). The first work directly leverages a reinforcement learning

method to find the solution, which may result in unrealistic scenarios and a loss of diversity. As

a remedy, the second work uses the advantage of the data-driven generation method as a prior

regularization and introduces an adaptive sampler to find as many solutions as possible.

Although generating critical scenarios based on optimization is an applicable direction, we

merely understand the underlying reason that causes the critical event in the scenario. Therefore,

in the next chapter, we will investigate more on using human knowledge to help generate crit-

ical scenarios. Specifically, we consider causality (Peters et al., 2017) as the representation of

knowledge, which describes the cause and effect between objects in the scenario.
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Chapter 4

Knowledge-based Generative Models

All truths are easy to understand once they are discovered; the point is to

discover them.

Galileo Galilei

In previous categories, we discussed methods that purely use data or interact with the AV

to generate scenarios. However, the scenarios constructed in the physical world need to satisfy

the traffic rules and the physical laws. The samples in the density we estimate or the adversarial

examples we generate could easily violate these constraints. Additionally, domain knowledge

also improves the efficiency of generation. After traffic accidents occur, we humans analyze the

scenario and find the reasons for the accidents. Finding the underlying causality, for example,

the view of the sensor is blocked, is important to efficiently generate safety-critical scenarios.

Therefore, we now consider methods that incorporate external domain knowledge into the

generation process. We will first explore rule-based methods that artificially design the struc-

ture and parameters of scenarios. Then we turn to the learning-based methods that use explicit

knowledge to guide generation. Assume we can obtain certain domain knowledge constraints

c ∈ C from experts, then we can augment the learning with

θ̂ = argmaxEx∼pθ(x|c) [g(x, πe)] , (4.1)

where the scenarios are sampled from a conditional distribution pθ(x|c). In addition, we can also
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Figure 4.1: The top scenario is safety-critical because the view of vehicle A is blocked by B.

use C to manipulate existing scenarios:

x̃ = argmax g(x, πe) s.t. C(x) ≥ 0, (4.2)

where C(x) ≥ 0 means the constraint is satisfied.

4.1 Scenario Reasoning with Causality

Generating safety-critical scenarios with Deep Generative Models (DGMs), which estimate the

distribution of data samples with neural networks, is viewed as a promising way in recent

works (Ding et al., 2022b). The existing literature either searches in the latent space to build

scenarios (Ding et al., 2021a,b) or directly uses optimization to find adversarial examples (Ding

et al., 2020b; Zhang et al., 2022). However, such a generation task is still challenging, since

we are required to simultaneously consider fidelity to avoid conjectural scenarios that will never

happen in the real world, as well as the safety-critical level, which is indeed rare compared with

normal scenarios. In addition, generating reasonable threats to vehicles’ safety can be inefficient

if the model purely relies on unstructured observational data, as the safety-critical scenarios are

rare and follow fundamental physical principles. Inspired by the fact that humans are good at

abstracting the causation beneath the observations with prior knowledge, we explore a new di-

rection toward causal generative models for this generation task.
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Figure 4.2: Diagram of the generation pipeline using CausalAF.

To have a look at causality in traffic scenarios, we show an example in Figure 4.1. When

a vehicle B is parked in the middle between the autonomous vehicle A and pedestrian C, the

view of A is blocked, making A have little time to brake and thus have a potential collision with

C. As human drivers, we believe that B should be the cause of the accident. This scenario may

take AVs millions of hours to collect (Feng et al., 2021). Even if we use traditional generative

models to generate this scenario, the model tends to memorize the location of all objects without

learning the reasons. As a remedy, we can incorporate causality into generative models for the

efficient generation of such safety-critical scenarios.

In this work, we propose a structured generative model with causal priors. We model the

causality as a directed acyclic graph (DAG) named Causal Graph (CG) (Pearl, 2009). To facilitate

CG in the traffic scenario, we propose another Behavioral Graph (BG) to represent the interaction

between objects in scenarios. The graphical representation of both graphs makes it possible to

use the BG to unearth the causality given by the CG. Based on BG, we propose the first generative

model that integrates causality into the graph generation task and names it CausalAF (Ding et al.,

2021c). Specifically, we propose two types of causal masks: Causal Order Masks (COM) that

modify the node order for node generation and Causal Visibility Masks (CVM) that remove

irrelevant information for edge generation. We show the diagram of CausalAF generation in

Figure 4.2 and summarize our main contributions as follows:

• We propose a causal generative model CausalAF that integrates causal graphs with two novel
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mask operators for safety-critical scenario generation.

• We show that CausalAF dramatically improves efficiency and performance in three standard

traffic settings compared to purely data-driven baselines.

• We show that training in generated safety-critical scenarios improves the robustness of 4 re-

inforcement learning-based driving algorithms.

4.1.1 Graphical Representation of Scenarios

We start by proposing a novel representation of traffic scenarios using a graph structure. Then,

we propose to generate such a graphical representation with an autoregressive generative model.

Behavioral Graph

Traffic scenarios mainly consist of interactions between static and dynamic objects, which can

be naturally described by a graph structure. Therefore, we define the Behavioral Graph GB to

represent driving scenarios with the following definition.

Definition 4 (Behavioral Graph, BG). Suppose a scenario has maximum m objects with n types.

A Behavioral Graph GB = (VB, EB) is a directed graph with node matrix VB ∈ Rm×n repre-

senting the types of objects and edge matrix EB ∈ Rm×m×(h1+h2) representing the interaction

between objects, where h1 is the number of edge types and h2 is the dimension of edge attributes.

According to this definition, GB works as a planner that controls the behavior of objects in

the scenario based on the types of nodes VB and edges EB. For example, two nodes v1 and v2

represent two vehicles and the edge of v1 to v2 represents the relative velocity between v1 and

v2. Specifically, a self-loop edge (i, i) represents that an object takes one action irrelevant to

other objects (e.g., a car goes straight or turns left with no impact on other road users), while

other edges (i, j) mean that the object i takes one action related to object j (e.g., a car i moves

towards a pedestrian j). The edge attributes represent the properties of the actions. For instance,

the attribute [x, y, vx, vy] of one edge has the following meaning: x and y are positions and vx

and vy are velocities.
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Behavioral Graph Generation with Autoregressive Flow

Generally, there are two ways to generate graphs: one is to simultaneously generate all nodes

and edges, and the other is to iteratively generate nodes and add edges between nodes. Con-

sidering the directed nature of GB, we utilize the Autoregressive Flow model (AF) (Huang

et al., 2018a), which is a type of sequentially DGMs, to generate nodes and edges of GB step

by step. It uses an invertible and differentiable transformation Fϕ parameterized by ϕ to con-

vert the graph GB to a latent variable z that follows a base distribution p(z) (for example,

normal distribution N (0, I)). According to the change of variables theorem, we can obtain

pϕ(GB) = p(Fϕ(GB))
∣∣∣det∂Fϕ(GB)

∂GB

∣∣∣ .To increase the representing capability, Fϕ contains multi-

ple functions fi for i ∈ {0, . . . , K}. The entire transformation is represented as GB = zK =

f−1K ◦ · · · ◦ f−10
∆
= F−1ϕ (z0) by repeatedly substituting the variable for the new variable zi, where

◦ means the composition of the function. Eventually, we obtain the likelihood

log pϕ(GB) = p(z0)−
K∑
i=1

log

∣∣∣∣det
df−1i
dzi−1

∣∣∣∣ , (4.3)

which will be used to learn the parameter ϕ based on empirical distribution of GB. After training,

we can sample from pϕ(GB) by using the reverse functionF−1ϕ . Let V B
[i] ∈ Rn andEB

[i,j] ∈ Rh1+h2

represent the node i and the edge (i, j) of GB, then we can generate them with the sampling

procedure:

VB[i] ∼ N
(
µvi , (σ

v
i )

2
)
= µvi + σvi ⊙ ϵ and EB[i,j] ∼ N

(
µeij, (σ

e
ij)

2
)
= µeij + σeij ⊙ ϵ, (4.4)

where ⊙ denotes the element-wise product and ϵ follows a Normal distribution N (0, I). Vari-

ables µvi , σ
v
i , µeij , and σeij are obtained from Fϕ in an autoregressive manner:

µvi , σ
v
i = Fϕ

(
VB[0:i−1], EB[0:i−1,0:m]

)
and µeij, σ

e
ij = Fϕ

(
VB[0:i], EB[0:i,0:j−1]

)
, (4.5)
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Figure 4.3: (a) The generation process of a BG starting from an empty graph. (b) CG and BG

are in the example. (c) The implementation of masking during the generation.

where [0 : i] represents the elements from index 0 to index i. After sampling, we obtain the node

and edge type by converting VB and part of EB from continuous values to one-hot vectors:

VB[i] ← onehot
[
argmax(VB[i])

]
, EB[i,j,0:h1] ← onehot

[
argmax(EB[i,j,0:h1])

]
∀i, j ∈ [m]. (4.6)

Intuitively, the generation of one node depends on all previously generated nodes and edges.

One node only has edges that point to the nodes that are generated before it. To illustrate this

autoregressive generation process, we provide an example with three nodes in Figure 4.3(a).

4.1.2 Causal Autoregressive Flow (CausalAF)

In this section, we discuss how to integrate causality into the autoregressive generating process

of the Behavioral Graph GB. In general, we transfer prior knowledge from a causal graph to GB

by increasing the structural similarity. However, calculating such similarity is not easy because

of the discrete nature of graphs. To solve this problem, we propose CausalAF with two causal

masks, i.e., Causal Order Masks (COM) and Causal Visible Masks (CVM), which make the

generated GB follow the causal information.
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Algorithm 4: Training process of CausalAF
Input: Causal Graph GC , Goal Lg, Learning rate α, Maximum node number m

1 while ϕ not converged do
// Sample a BG GB ∼ pϕ(GB|GC)

2 for i < m do
3 Sample node matrix VB[i] by (4.4)
4 Get node type VB[i] by (4.6)
5 Apply Causal Order Masks (COM) M0,i to VB[i]
6 Apply Causal Visible Masks (CVM) M1,i, M2,i to VB[i], EB[i,j]
7 for j ≤ i do
8 Sample edge matrix EB[i,j] by (4.4)
9 Get edge type EB[i,j] by (4.6)

10 Collect one scenario GB = {VB, EB}
// Learn model parameters

11 Calculate the likelihood pϕ(GB|GC)
12 Execute τ = F(GB) and get Lg(τ)
13 Use (4.9) to update ϕ← ϕ− α∇ϕLg(τ)

Causal Generative Models

Definition 5 (Structural Causal Models (Peters et al., 2017), SCM). A structural causal model

(SCM) C := (S,U) consists of a collection S ofm functions, vj := fj(PAj, uj), ∀j ∈ [m], where

PAj ⊂ {v1, . . . , vm}\{vj} are called parents of vj; and a joint distribution U = {u1, . . . , um}
on the noise variables, which are required to be jointly independent.

Definition 6 (Causal Graphs (Peters et al., 2017), CG). The causal graph GC of an SCM is

obtained by creating a node for each vj and drawing directed edges from each parent in PAj(GC)
to vj . The representation of GC = (VC , EC) consists of the node vector VC ∈ {0, 1}m and the

adjacency matrix EC ∈ {0, 1}m×m×h1 . Each edge (i, j) represents a causal relation from node i

to node j.

We formally describe causality based on the above definitions of SCM and CG. In fact, the

generative model pϕ(GB) mentioned in Section 4.1.1 shares a very similar definition with SCM

except that GB does not follow the order of causality. This inspires us that we can convert pϕ(GB)
to an SCM by incorporating the causal graph GC into the generation process. In this method,

we assume that the causal graph GC can be summarized by expert knowledge. Therefore, we
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incorporate a given GC into pϕ(GB|GC) by regularizing the generative process with two novel

masks as shown in Figure 4.3.

Causal Graph Integration

We introduce two masks to integrate causality into the autoregressive generation model.

Causal Order Masks (COM). The order is vital during the generation of GB since we must

ensure that the cause is generated before the effect. To achieve this, we maintain a priority

queue Q to store valid child types according to the causal relation in GC . Q is initialized with

Q = {i| PAi(GC) = ∅ ,∀i ∈ [m]}, which contains all nodes that do not have parent nodes. Then,

in each step of node generation, we update Q by removing the generated node i and adding the

child nodes of i. Since one node may have multiple parents, it is valid only if all of its parents

have been generated. We use Q to create a k-hot mask M0,i ∈ Rn, where the element is set to

1 if it is a valid type. Then we apply COM to the node matrix by VB[i] ← M0,i ⊙ VB[i], where VB[i]
is the node vector obtained from Fϕ for node i. Intuitively, this mask sets the probability of the

invalid node types to 0 to make sure the generated node always follows the correct order.

Causal Visible Masks (CVM). Ensure that the correct causal order is still insufficient to rep-

resent the causality. Thus, we further propose another type of mask called CVM, which removes

the non-causal connections, i.e., non-parent nodes to the current node in GC , when generating

edges. Specifically, we generate two binary masks M1,i ∈ Rm×n and M2,i ∈ Rm×m×(h1+h2) with

M1,i
[j,:] = 0 and M2,i

[j,i,:] = 0 ,∀j /∈ PAi(GC). (4.7)

Then, we apply them to update the node matrix and edge matrix by VB ←M1,i⊙VB and EB ←
M2,i ⊙ EB. We illustrate an example of this process in Figure 4.3(c). Assume that we are

generating edges for node c. We need to remove node b since GC tells us that B does not have

edges to node C. After applying M v and M e, we move the features of node c to the previous

position of b. This permutation operation is important, since the autoregressive model is not

permutation invariant.
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Optimization of Safety-critical Generation

After introducing the generative process of CausalAF, we now turn to the optimization proce-

dure. The objective is to generate scenarios τ = F(GB) with an executor F to satisfy a given

goal, which is formulated as an objective function Lg. We define Lg(τ) = 1(D(τ) < ϵ), where

D(τ) represents the minimal distance between the autonomous vehicle and other objects, and ϵ

is a small threshold. Therefore, the optimization is to solve the problem:

max
ϕ

EGB∼pϕ(GB |GC)[Lg(F(GB))]. (4.8)

Usually, Lg contains non-differentiable operators (e.g., complicated simulation and rendering),

thus we have to utilize black-box optimization methods to solve the problem. We consider a

policy gradient algorithm named REINFORCE (Williams, 1992), which obtains the estimation

of the gradient from samples by

∇ϕEGB∼pϕ(GB |GC)[Lg(F(GB))] = E[∇ϕ log p(GB|GC)Lg(F(GB))]. (4.9)

Overall, the entire training algorithm is summarized in Algorithm 4. In addition, we can prove

that the CausalAF guarantees monotonicity of likelihood in Theorem 1 at convergence.

Theorem 1 (Monotonicity of Likelihood). Given the true causal graph GC∗ = (VC , EC∗) and

the Structural Hamming Distance (SHD) (Acid and de Campos, 2003), for CG GC1 = (VC , EC1 )
and GC2 = (VC , EC2 ), if SHD(GC1 ,GC

∗
) < SHD(GC2 ,GC

∗
), and edge ∃ e, s.t. EC1 ∪ {e} =

EC2 , CausalAF converges with the monotonicity of likelihood, that is, pϕ(D(τ) < ϵ | GC2 ) <
pϕ(D(τ) < ϵ | GC1 ) < pϕ(D(τ) < ϵ | GC∗).

Before providing the proof of this Theorem, we need to define several important concepts.

Definition 7 (Structural Hamming Distance (SHD)). For any two DAGs GC1 ,GC2 with identical

vertices set V , we define the following function SHD: G × G → R,

SHD(GC1 ,GC2 ) = #{(i, j) ∈ V2 | GC1 and GC2 have different edges eij}
∆
=
∑
j∈V

|PAj(GC1 )− PAj(GC2 )|,
(4.10)
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where |PAj(GC1 )− PAj(GC2 )| is the number of the absolute difference in parental nodes for node

j between causal graph GC1 and GC2 .

Definition 8 (Nodes in Behavior Graph). Let xj =
[
vj, {eij}i∈{PAj(GC)∪j}

]
, where vi is the node

type of the j-th node, and e·j are the arrows that point in the j-th node. All these components form

the node vj in the behavior graph.

Definition 9 (Respect the graph). For any given behavior graph GB with a specific causal graph

GC , the transition model respects the graph if the distribution pϕ(GB|GC) can be factorized as:

p(GB|GC) =
∏
j∈[m]

p(vj|PAj(GC)), (4.11)

where m is the number of factorized nodes, and PAj(·) is for vj’s parents based on the causal

graph.

Proposition 1 (CausalAF respects the graph).

pϕ(GB|GC) =
∏
j∈[m]

[
pϕ(vj|PAj(GC))︸ ︷︷ ︸

COM

pϕ(ejj|vj,PAj(GC))
∏

i∈PAj(GC)

pϕ(eij|vj,PAj(GC))︸ ︷︷ ︸
CVM

]

=
∏
j∈[m]

[
pϕ(vj, ejj|PAj(GC))

∏
i∈PAj(GC)

pϕ(eij|vj,PAj(GC))
]

=
∏
j∈[m]

pϕ(vj, {eij}i∈{PAj(GC)∪j}|PAj(GC))

=
∏
j∈[m]

pϕ(Gj|PAj(GC)).

(4.12)

The CausalAF node generation process combines two phases: firstly, we use COM to deter-

mine the generation order of the node, which prevents the generation of child nodes before their

parent nodes. This COM can also be interpreted as a node ordering with topological sorting,

therefore, CausalAF should always respect the term p(vj|PAj(GC)),∀j in Equation (4.12).

On the other hand, CVM is used to guarantee that the output of the autoregressive flow model

uses proper structural information (i.e. the parents of the current node) to generate the self-loop

edge as well as edges between new nodes and their parents accordingly, the CVM trick thus
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guarantees that CausalAF respects the term

p(ejj|vj,PAj(GC))
∏

i∈PAj(GC)

p(eij|vj,PAj(GC)), ∀j (4.13)

in Equation (4.12).

Assumption 1 (Local Optimality). Let GC∗ be the ground truth of the causal graph, for any

nodes vj with its parental set PAj(GC1 ) ̸= PAj(GC∗). At convergence, CausalAF will have

max
ϕ

pϕ(vj|PAj(GC∗)) > max
ϕ

pϕ(vj|PAj(GC1 )). (4.14)

Assumption 2 (Local Monotonicity of Behavior Graph). For a single node vj , its local mono-

tonicity of likelihood means for any conditional set, we have

PAj(GC1 ),PAj(GC2 ) ̸= PAj(GC). (4.15)

if |PAj(GC1 )− PAj(GC)| < |PAj(GC2 )− PAj(GC)|, and ∃ v, s.t. PAj(GC2 ) ∪ v = PAj(GC1 ). Then

we have:

max
ϕ

pϕ(Gj|PAj(GC1 )) > max
ϕ

pϕ(Gj|PAj(GC2 )). (4.16)

With these assumptions and definitions, we now provide a proof of the monotonicity of like-

lihood in CausalAF.

Monotonicity of Likelihood. Given that GB ∼ pϕ(GB|GC), τ = F(GB), by using the change of

variable theorem, we have

τ ∼ pϕ(F−1(τ)|GC)| det
∂F−1(τ)
∂τ

| ∆= p̂ϕ(τ |GC). (4.17)
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Then, the optimization process of CausalAF can be rewritten as below:

max
ϕ

EGB∼pϕ(GB |GC)[1(D(F(GB)]) < ϵ)]

= max
ϕ

Ep̂ϕ(τ |GC)[1(D(τ) < ϵ)]

= max
ϕ

p̂ϕ(D(τ) < ϵ|GC) = max
ϕ

p̂ϕ(GB ∈ A|GC),

(4.18)

where A = {GB|D(F(GB)) < ϵ}. Since the CausalAF respects the graph, as shown in Proposi-

tion 1, for true CG GC∗ and another CG GC1 ̸= GC
∗. By applying the local monotonicity in the

previous assumptions, when CausalAF converges, we will have

p̂ϕ(GB ∈ A|GC1 ) =
∏
j

p̂ϕ(vj ∈ Aj|PAj(GC1 ))

=
∏

∀j,s.t.
PAj(GC

1 )=PAj(GC∗
)

p̂ϕ(vj ∈ Aj|PAj(GC1 ))
∏

∀j,s.t.
PAj(GC

1 )̸=PAj(GC∗
)

p̂ϕ(vj ∈ Aj|PAj(GC1 ))

<
∏

∀j,s.t.
PAj(GC

1 )=PAj(GC∗
)

p̂ϕ(vj ∈ Aj|PAj(GC∗))
∏

∀j,s.t.
PAj(GC

1 )=PAj(GC∗
)

p̂ϕ(vj ∈ Aj|PAj(GC∗))

=
∏
j

p̂ϕ(vj ∈ Aj|PAj(GC∗)) = p̂ϕ(GB ∈ A|GC∗).

(4.19)

Then we assume we have another Causal Graph GC2 ̸= GC1 if SHD(GC1 ,GC
∗
) < SHD(GC2 ,GC

∗
)

and ∃ e, s.t. EC1 ∪ {e} = EC2 ,

p̂ϕ(GB ∈ A|GC2 ) =
∏
j

p̂ϕ(vj ∈ Aj|PAj(GC2 ))

=
∏

∀j,s.t.
PAj(GC

1 )=PAj(GC
2 )

p̂ϕ(vj ∈ Aj|PAj(GC2 ))
∏

∀j,s.t.
PAj(GC

1 )̸=PAj(GC
2 )

p̂ϕ(vj ∈ Aj|PAj(GC2 ))

<
∏

∀j,s.t.
PAj(GC

1 )=PAj(GC
2 )

p̂ϕ(vj ∈ Aj|PAj(GC1 ))
∏

∀j,s.t.
PAj(GC

1 )=PAj(GC
1 )

p̂ϕ(vj ∈ Aj|PAj(GC1 ))

=
∏
j

p̂ϕ(vj ∈ Aj|PAj(GC1 )) = p̂ϕ(GB ∈ A|GC1 ).

(4.20)

Based on the derivation above, we conclude that p̂ϕ(GB ∈ A|GC2 ) < p̂ϕ(GB ∈ A|GC1 ) <
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p̂ϕ(GB ∈ A|GC∗), which indicates that at convergence, the likelihood of collision samples con-

verge with monotonicity guarantees:

pϕ(D(τ) < ϵ | GC2 ) < pϕ(D(τ) < ϵ | GC1 ) < pϕ(D(τ) < ϵ | GC∗). (4.21)

Scenario Sampling and Execution

Thanks to the autoregressive generation of CausalAF, we can conduct generation conditioned

on arbitrary numbers or types of nodes. Instead of generating from scratch, we can start from

an existing GBc for the generation with GB ∼ pϕ(·|GBc ,GC). Conditional generation can be

used for interactive scenarios, e.g., using the autonomous vehicle’s information or the data of

partial scenarios in the real world as conditions to generate diverse and realistic scenarios. After

sampling the scenarios, the physical properties (for example, position and velocity) defined in the

generated GB are executed in the simulator F to create sequential scenarios τ . After execution,

the simulator outputs the objective function Lg(τ) as a result.

4.1.3 Experiment and Analysis

We evaluate CausalAF using three main pre-crash traffic scenarios defined by the US Department

of Transportation (Najm et al., 2013) and the Euro New Car Assessment Program (Van Ratingen

et al., 2016). Our empirical results show that it may not be trivial for generative models to learn

the underlying causality even if such causality seems understandable to humans. In particular,

we conducted a series of experiments to answer the following main questions. Q1: How does

CausalAF perform compared to other scenario generate methods? Q2: How does causality help

the generation process? Q3: How can we use the generated safety-critical scenarios? In this

section, we will first introduce the designed environment and baseline methods. Then we will

answer the above questions by carefully investigating the experiment results.
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Figure 4.4: Three causal traffic scenarios are used in our experiments. The corresponding causal

graphs are shown in the upper right of each scenario.

Simulations and Baselines

We first introduce the scenarios we used in our experiment and the baselines we consider as a

comparison.

Scenario. We consider three safety-critical traffic scenarios (shown in Figure 4.4) that have

a clear causation. The causal graph GC for each scenario is displayed in the upper right of the

scenario.

• Intersection. One potential safety-critical event could happen when the traffic light T turns

from green to yellow to give the road right to an autonomous vehicle A. Here, A and R are

influenced by T . R runs the red light, colliding with A perpendicularly, therefore, causing the

collision C together with A. I does not influence other objects.

• Crossing. A pedestrian P and an autonomous vehicle A cross the road in vertical directions.

There also exists a static vehicle S parked on the side of the road. Then a potentially risky

scenario could happen when S blocks the vision of A. In this scenario, S is the parent of A,

and P and A cause the collision C. I does not influence other objects.

• Highway. An autonomous vehicle A takes a lane-changing behavior due to a static car S

parked in front of it. Meanwhile, a vehicle R drives in the opposite lane. Since S blocks the

vision of A, A is likely to collide with R. In this scenario, S is the parent of A, and R and A

cause the collision C. I does not influence other objects.

Simulator. We implement the above scenarios in a 2D simulator, where all agents have radar
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Figure 4.5: Training objective of CausalAF and two variants under two sampling temperatures.

Table 4.1: Collision rate (↑) of generated safety-critical scenarios. Bold font means the best.

Method L2C MMG SAC STRIVE Baseline Baseline+COM CausalAF

Intersection 0.63±0.28 0.31±0.54 0.47±0.61 0.64±0.12 0.29±0.84 0.69±0.52 0.98±0.01
Crossing 0.69±0.41 0.43±0.56 0.38±0.49 0.55±0.10 0.35±0.65 0.57±0.48 0.83±0.13
Highway 0.85±0.10 0.56±0.36 0.58±0.41 0.67±0.16 0.53±0.69 0.88±0.04 0.91±0.06

sensors and are controlled by a simple vehicle dynamic. During the running, the autonomous

vehicle is controlled by a rule-based policy, which will decelerate if it detects any obstacles in

front of it within a certain range Thus, the safety-critical scenario will not happen unless the

radar of one agent is blocked and the distance is smaller than the braking distance, avoiding the

creation of unrealistic scenarios. The action space contains the acceleration and steering of all

objects, and the state space contains the position and heading of all objects and the status of the

traffic lights if applicable.

Baselines. We consider 7 algorithms as baselines, including 5 scenario generation methods

and 2 variants of CausalAF. Learning to collide (L2C) (Ding et al., 2020b) uses a Bayesian net-

work to describe the relationship between objects and uses RL to search the scenario parameters.

Multi-modal Generation (MMG) (Ding et al., 2021a) uses an adaptive sampler to increase sam-

ple diversity. STRIVE (Rempe et al., 2022) learns traffic prior from datasets and uses adversarial

optimization to generate risk scenarios. SAC is a standard RL algorithm that uses the objec-

tive as a reward function. To further investigate the contribution of COM and CVM, we design

two variants that share the same network structure as CausalAF. Baseline does not use COM or

CVM, and Baseline+COM only uses COM.
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Figure 4.6: The training objectives in the Pedestrian scenario from different numbers of irrelevant

vehicles.

Results Discussion

Next, we show results and analysis to answer the following research questions.

How does CausalAF perform on safety-critical scenario generation? (Q1) We train all

generation methods in 3 environments and report the final objective values in Table 4.1. We ob-

serve that CausalAF achieves the best performance among all methods. L2C performs better than

MMG and SAC because it also considers the structure of the scenario. We also notice that both

Baseline and Baseline+COM have performance drops compared to CausalAF, indicating that the

COM and CVM modules contribute to the autoregressive generating process. Baseline+COM

performs better than Baseline, which validates our hypothesis that COM is not powerful enough

to represent causality. To investigate the training procedure, we plot the training objectives in

Figure 4.5 with two different sampling temperatures T , which controls the sampling variance

in ϵ ∼ N (0, T ). A high temperature provides strong exploration but causes slow convergence.

However, we find that using a small temperature leads to unstable training with high variance

due to poor exploration capability.

How does causality help the generation process? (Q2) The baseline design represents the
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model that uses the full graph. Therefore, the results in Table 4.1 also demonstrate that the causal

graph is more helpful than the full graph. To investigate why the causal graph helps learning, we

conduct an ablation study on the number of irrelevant nodes (I node), which do not have edges in

the causal graph. In Figure 4.6, we can see that the addition of more irrelevant vehicles increases

the gap between CausalAF and Baseline – the performance of the baseline gradually drops as

the number of I nodes increases but CausalAF has consistent performance. The reason is that

CausalAF is able to diminish the impact of irrelevant information with COM and CVM.

How can we use the generated scenarios? (Q3) Finally, we explore how to use the gener-

ated safety-critical scenarios. We train 4 RL agents ({SAC, PPO, DDPG, MBRL}-Norm) under

normal scenarios (uniformly sample the parameters of objects in the scenario), then we evalu-

ate them under scenarios generated by four different methods: Normal, L2C, MMG, and Ours

(CausalAF) to test performance in safety-critical scenarios. We also train another 4 agents un-

der scenarios generated by our method ({SAC, PPO, DDPG, MBRL}-Ours) and evaluate under

four different scenarios. We report the collision rate in Table 4.2. We find that scenarios gen-

erated by our CausalAF cause more collisions to the RL agents, which also shows that training

in normal scenarios is not enough for safety. After training in scenarios generated by CausalAF,

the agents achieve a lower collision rate in all scenarios, indicating the usefulness of training on

safety-critical scenarios.

Table 4.2: Collision rate (↑) of RL algorithms evaluated in different scenarios.

Method Intersection Crossing Highway
Norm L2C MMGOurs Norm L2C MMGOurs Norm L2C MMGOurs

SAC-Norm 0.05 0.57 0.64 0.91 0.04 0.54 0.67 0.92 0.03 0.79 0.75 0.95
SAC-Ours 0.01 0.03 0.04 0.08 0.00 0.04 0.06 0.11 0.02 0.01 0.04 0.09

PPO-Norm 0.07 0.44 0.48 0.86 0.03 0.53 0.61 0.80 0.02 0.62 0.64 0.92
PPO-Ours 0.00 0.04 0.01 0.12 0.02 0.03 0.03 0.08 0.01 0.02 0.03 0.13

DDPG-Norm 0.12 0.76 0.62 0.89 0.07 0.71 0.76 0.85 0.04 0.72 0.61 0.95
DDPG-Ours 0.01 0.02 0.05 0.13 0.02 0.01 0.04 0.12 0.03 0.03 0.03 0.16

MBRL-Norm 0.04 0.78 0.74 0.98 0.05 0.68 0.85 0.97 0.05 0.79 0.87 0.98
MBRL-Ours 0.00 0.01 0.01 0.07 0.00 0.01 0.02 0.09 0.00 0.03 0.01 0.10
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4.2 Generative Models with Causal Discovery

Generalizability, which enables an algorithm to handle unseen tasks, is fruitful but challenging

in multifarious decision-making domains. Recent literature (Cranmer et al., 2006; Li et al.,

2020; Xu et al., 2021a) reveals the critical role of reasoning in improving the generalization

of reinforcement learning (RL). However, most off-the-shelf RL algorithms (Sutton and Barto,

2018) have not considered reasoning an indispensable accessory, thus usually suffering from

data inefficiency and performance degradation due to the mismatch between training and testing

settings. To achieve generalization in the testing stage, some effort was put into incorporating

domain knowledge to learn structured information, including subtask decomposition (Lu et al.,

2021) and program generation (Han and Zhou, 2020; Landajuela et al., 2021; Sun et al., 2019;

Yang et al., 2021; Zhao et al., 2021), which guide the model to solve complicated tasks in an

explainable way. However, such symbolism-dominant methods heavily depend on the reusability

of subtasks and predefined grammars, which may not always be accessible in decision-making

tasks.

Inspired by the close link between reasoning and the cause-and-effect relationship, causality

has recently been incorporated to compactly represent the structured knowledge mentioned above

in RL training (Gershman, 2017). Based on the form of causal knowledge, we divide related work

into two categories, that is, implicit and explicit causation. With a implicit causal representation,

researchers ignore the detailed causal structure. For instance, (Zhang et al., 2020a) extracts

invariant features as one node that influences the reward function, while the other node consists

of task-irrelevant features (Bica et al., 2021; Sodhani et al., 2022; Sontakke et al., 2021; Tomar

et al., 2021). This neat structure has good scalability but requires access to multiple environments

that share the same invariant feature (Bica et al., 2021; Han et al., 2021; Zhang et al., 2020a). In

contrast, one can turn to the explicit side by estimating detailed causal structures (Gasse et al.,

2021; Seitzer et al., 2021; Volodin et al., 2020; Wang et al., 2021d), which uses directed graphical

models to capture causality in the environment. A pre-request for this estimation is the object-

level or event-level abstraction of the observation, which is available in most tasks and also

becoming a frequently studied problem (Abel, 2022; Abel et al., 2018; Shanahan and Mitchell,

2022). However, existing explicit causal reasoning RL models either require the true causal
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graph (Nair et al., 2019) or rely on heuristic design without theoretical guarantees (Wang et al.,

2021d).

In this work, we propose GeneRAlizing by DiscovERing (GRADER) (Ding et al., 2022a),

a causal reasoning method that augments the RL algorithm with data efficiency, interpretability,

and generalizability. We focus mainly on Goal-Conditioned RL (GCRL) (Liu et al., 2022), where

different goal distributions during training and testing reflect the generalization. We formulate

the GCRL as a probabilistic inference problem (Levine, 2018) with a learnable causal graph

as latent variable. This novel formulation naturally explains the learning objective with three

components – transition model learning, planning, and causal graph discovery – leading to an

optimization framework that alternates between causal discovery and policy learning to gain

generalizability. Under some mild conditions, we prove the unique identifiability of the causal

graph and the theoretical performance guarantee of the proposed framework.

To demonstrate the effectiveness of the proposed method, we conduct comprehensive ex-

periments in environments that require strong reasoning capability. Specifically, we design two

types of generalization settings, that is, spuriousness and composition, and provide an example

to illustrate these settings in Figure 4.7. The evaluation results confirm the advantages of our

method in two aspects. First, the proposed data-efficient discovery method provides an explain-

able causal graph, but requires much less data than previous methods, increasing data efficiency

and interpretability during task solving. Second, simultaneously discovering the causal graph

during policy learning dramatically increases the success rate in solving tasks. In summary, the

contribution of this work is threefold:

• We use the causal graph as a latent variable to reformulate the GCRL problem and then

derive an iterative training framework from solving this problem.

• We prove that our method uniquely identifies true causal graphs, and the performance of

iterative optimization is guaranteed with a lower bound given the converged transition dy-

namics.

• We design nine tasks in three environments that require strong reasoning capability and show

the effectiveness of the proposed method against strong baselines on these tasks.
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Figure 4.7: Left: The causal graph of the pick and place task. Right: Three testing settings: (1)

In distribution (2) Spuriousness (3) Composition.

4.2.1 Problem Formulation and Preliminary

We start by discussing the setting we consider in this work and the assumptions required in

causal reasoning. We then briefly introduce the necessary concepts related to causality and causal

discovery.

Factorized Goal-conditioned RL

We assume that the environment follows the goal-conditioned Markov Decision Process (MDP)

setting with full observation. This setting is represented by a tupleM = (S,A,P ,R, G), where

S is the state space, A is the action space, P is the probabilistic transition model, G ⊂ S is

the goal space which is a set of assignment of values to states, and r(s, g) = 1(s = g) ∈ R
is the sparse deterministic reward function that returns 1 only if the state s matches the goal g.

In this method, we focus on the goal-conditioned generalization problem, where the goal for the

training and testing stages will be sampled from different distributions ptrain(g) and ptest(g). We

refer to a goal g ∈ G as a task and use these two terms interchangeably. To accomplish the causal

discovery methods, we make a further assumption similar to (Boutilier et al., 2000; Seitzer et al.,

2021) for the state and action space:

Assumption 3 (Space Factorization). The state space S = {S1 × · · · × SM} and action space

A = {A1 × · · · × AN} can be factorized to disjoint components {Si}Mi=1 and {Ai}Ni=1.

Components representing one event or object’s property usually have explicit semantic mean-

ings for better interpretability. This assumption can be satisfied by abstraction of state and action,

which has been widely investigated in (Abel, 2022; Abel et al., 2018; Shanahan and Mitchell,
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2022). Such factorization also helps to deal with high-dimensional states since it could be in-

tractable to treat each dimension as one random variable (Wang et al., 2021d).

Causal Reasoning with Graphical Models

Reasoning with causality is based on specific causal structures, which are commonly represented

as directed acyclic graphs (DAGs) (Peters et al., 2017) over variables. Consider random variables

X = (X1, . . . , Xd) with index set V := {1, . . . , d}. A graph G = (V , E) consists of nodes V and

edges E ⊆ V2 with (i, j) for any i, j ∈ V . A node i is called a parent of j if eij ∈ E and eji /∈ E .

The set of parents of j is denoted by PAj(G). We formally discuss the graph representation of

causality with two definitions.

Definition 10 (Structural Causal Models (Peters et al., 2017)). A structural causal model (SCM)

C := (S,U) consists of a collection S of d functions

vj := fj(PAj(G), uj), j ∈ [d], (4.22)

where PAj ⊂ {v1, . . . , vd}\{vj} are called parents ofXj; and a joint distribution U = {u1, . . . , ud}
over the noise variables, which are required to be jointly independent.

Definition 11 (Causal Graph (Peters et al., 2017), CG). The causal graph G of an SCM is ob-

tained by creating one node for each vj and drawing directed edges from each parent in PAGj to

vj .

We note that CG describes the structure of causality and SCM further considers the spe-

cific causation of the parents of vj to vj via fj as well as exogenous noises uj . To uncover the

causal structure from the data distribution, we assume that the CG satisfies the Markov Prop-

erty and Faithfulness (Peters et al., 2017), which make the independences consistent between

the joint distribution P (v1, . . . , vn) and the graph G. We also follow the Causal Sufficiency as-

sumption (Spirtes et al., 2000) that supposes that we have measured all common causes of the

measured variables.

Existing work (Pitis et al., 2020; Seitzer et al., 2021) believes that two objects have causality

only if they are close enough, while there is no edge between them if the distance is large. Instead
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of using such a local view of causality, we assume that the causal graph is consistent across all

time steps, which also handles the local causal influence. The specific influence indicated by the

edges is estimated by the function fj(PAj, uj).

4.2.2 Generalizing by Discovering (GRADER)

With proper definitions and assumptions, we now look at the proposed method. We first derive

the framework of GRADER by formulating the GCRL problem as a latent variable model, which

provides a variational lower bound to optimize. Then, we divide this objective function into three

parts and iteratively update them with a performance guarantee.

GCRL as Latent Variable Models

The general objective of RL is to maximize the expected reward function with respect to a

learnable policy model π. In particular, in the goal-conditioned setting, such an objective is

represented as maxπ Eτ∼π,g∼p(g)[
∑T

t=0 r(s
t, g)], where p(g) is the distribution of the goal and

τ := {s0, a0, . . . , sT} is the action-state trajectory with time step T . We denote the end of the

trajectory as the goal state g = sT .

Inspired by viewing the RL problem as a probabilistic inference (Abdolmaleki et al., 2018;

Levine, 2018), we replace the objective from “How to find actions to achieve the goal?” to

“What are the actions if we achieve the goal?”, leading to a likelihood maximization problem

for p(τ |s∗) with s∗ := 1(g = sT ). Different from previous work (Marino and Yue, 2019) that

recasts actions as latent variables and infers actions that result in “observed” high reward, we

123



decompose p(τ |s∗) with G as the latent variable to get the evidence lower bound (ELBO)

log p(τ |s∗) = log

∫
p(τ |G, s∗)p(G|s∗)dG

= log

∫
q(G|τ)p(τ |G, s

∗)p(G|s∗)
q(G|τ) dG

≥
∫
q(G|τ) log p(τ |G, s

∗)p(G|s∗)
q(G|τ) dG

=

∫
q(G|τ)

(
log p(τ |G, s∗) + log

p(G|s∗)
q(G|τ)

)
dG

=

∫
q(G|τ) log p(τ |G, s∗)dG +

∫
q(G|τ) log p(G|s

∗)

q(G|τ) dG

= Eq(G|τ)[log p(τ |G, s∗)]− DKL[q(G|τ)||p(G)],

(4.23)

where the prior p(G) and variational posterior q(G|τ) represent distributions over graph struc-

tures, i.e., the probability of the existence of edges in graphs. The third line is obtained by

Jensen’s inequality and the last line is because the prior of the causal graph G is independent of

the achieved goal s∗. DKL denotes the Kullback–Leibler (KL) divergence between two graphs,

which will be explained in Section 4.2.2. Recall that the space of the goal G is a subset of the

state; we extend the meaning of g and assume that all trajectories achieve the goal in the final

state (Andrychowicz et al., 2017), i.e. g = sT . This extension makes it possible to further

decompose the first term of (4.23). According to the decomposition of state-action trajectory,

p(τ) = p(s0)
T−1∑
t=0

p(st+1|st, at)p(at|st). (4.24)

we can get the following result.

log p(τ |G, s∗) = log(s0, a0, s1, a1, · · · , aT−1, sT |G, s∗)

= log p(s0|G, s∗) +
T−1∑
t=0

log p(st+1|st, at,G, s∗) +
T−1∑
t=0

log p(at|st,G, s∗)

= log p(s0) +
T−1∑
t=0

log p(st+1|st, at,G) +
T−1∑
t=0

log p(at|st,G, s∗).

(4.25)
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Here, we use the fact that G is effective in both the transition model p(st+1|at, st,G) and

the policy model log p(at|st, s∗,G), g only influences the policy model, and the initial state s0

depends neither on G nor g. We also assume that the initial state log p(s0) is irrelevant to the

model parameters. Thus, the first term of (4.25) can be ignored. The policy term π, selecting

action at according to the current state st and the goal g, is implemented with the planning

method and is further discussed in Section 4.2.2. Finally, we maximize the likelihood p(τ |s∗)
with the ELBO reformulated as the objective.

J (θ, ϕ) = Eqϕ(G|τ)
T−1∑
t=0

[
log pθ(s

t+1|st, at,G) + log πθ(a
t|st, s∗,G)

]
− DKL[qϕ(G|τ)||p(G)],

(4.26)

where θ is the shared parameter of transition model pθ(st+1|at, st,G) and policy πθ(at|st, s∗,G),
and ϕ is the parameter of causal graph qϕ(G|τ). To efficiently solve this optimization problem, we

iteratively update the parameter ϕ (causal discovery, Section 4.2.2) and the parameter θ (model

and policy learning, Section 4.2.2), as shown in Figure 4.8. Intuitively, these processes can be,

respectively, viewed as the discovery of graph and the update of fi, which share tight connections

as discussed in Section 4.2.1.

Model and Policy Learning

Let us start with a simple case where we already obtain a G and use it to guide the learning of the

parameter θ by maxθ J (θ, ϕ). Since the KL divergence of J (θ, ϕ) does not involve θ, we only

need to deal with the first expectation term, that is, the likelihood of transition model and policy.

For the transition pθ(st+1|at, st,G), we connect it to the causal structure by further defining a

particular type of CG and denote it as G in the rest of this section.

Definition 12 (Transition Causal Graph). We define a bipartite graph G, whose vertices are

divided into two disjoint sets U = {At,St} and V = {St+1}. At represents action nodes at step

t, St state nodes at step t, and St+1 the state nodes at step t + 1. All edges start from set U and

end in set V .

Model learning. This definition builds the causal graph between two consecutive time steps,

indicating that the values of states in step t + 1 depend on the values in step t. It also implies
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Figure 4.8: The paradigm of GRADER.

that the interventions (Peters et al., 2017) in the nodes in U are obtained directly since they

do not have parent nodes. We denote the marginal distribution of S as pIsπ , which is collected

by the RL policy π. Combined with the definition 10 of SCM, we find that pθ(st+1|at, st,G)
essentially approximates a collection of functions fj following the structure G, which take as

input the values of the parents of the state node sj and outputs the value sj . Thus, we propose to

model the transition corresponding to G with a collection of neural networks fθ(G) := {fθj}Mj=1

to obtain

st+1
j = fθj([PAGj ]

t, Uj), (4.27)

where [PAGj ]t represents the values of all parents of node stj at time step t and Uj follows Gaussian

noise Uj ∼ N (0, I). In practice, we use Gated Recurrent Unit (Chung et al., 2014) as fj because

it supports varying numbers of input nodes. We take stj as the initial hidden embedding, and

the rest of the parents [PAGj \sj]t as the input sequence to fj . The entire model is optimized by

stochastic gradient descent with the log-likelihood log pθ(s
t+1|at, st,G) as objective.

Policy learning with planning. Then we turn to the policy term πθ(a
t|st, s∗,G) in J (θ, ϕ).

We optimize it with planning methods that take advantage of the estimated transition model.

Specifically, the policy aims to optimize an action-state value function.

Q(st, at) = E

[
H∑
t′=0

γt
′
r(st

′+t, at
′+t)|st, at

]
, (4.28)
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which can be obtained by unrolling the transition model with a horizon of H steps and discount

factor γ. In practice, we use model predictive control (MPC) (Camacho and Alba, 2013) with

random shooting (Richards, 2005), which selects the first action on the fixed horizon trajectory

that has the highest action-state value Q(st, at), i.e. π̂(st) = argmaxat∈AQ
G
θ (s

t, at). The for-

mulation we have derived so far is highly correlated with the model-based RL framework (Wang

et al., 2019a). However, the main difference is that we obtain it with variational inference by

regarding the causal graph as a latent variable.

Data-Efficient Causal Discovery

In this step, we relax the assumption of knowing G and aim to estimate the posterior distribution

q(G|τ) to optimize ELBO (4.26) w.r.t. parameter ϕ. In most score-based methods (Chickering,

2002), likelihood is used to assess the correctness of the causal graph, that is, a better causal

graph leads to a higher likelihood. Since the first term of (4.26) represents the likelihood of the

transition model, we convert the problem of maxϕ J (θ, ϕ) to causal discovery that finds the true

causal graph based on the collected data samples. As for the second term of (4.26), the following

proposition shows that the KL divergence between qϕ(G|τ) and p(G) can be approximated by

sparsity regularization.

Proposition 2 (KL Divergence as Sparsity Regularization). With entry-wise independent Bernoulli

prior p(G) and point mass variational distribution q(G|τ) of DAGs, DKL[qϕ∥p] is equivalent to

an ℓ1 sparsity regularization for the discovered causal graph.

Before proofing this proposition, we first make several mild assumptions.

Assumption 4 (Markov property). Given a DAG G and a joint distribution PX , this distribution

is said to satisfy

• (i) the global Markov property with respect to the DAG G if

A ⊥⊥ GB|C ⇒ A ⊥⊥ B|C (4.29)

for all disjoint vertex sets A,B,C. The symbol independentG denotes d-separation.

• (ii) the local Markov property with respect to the DAG G if each variable is independent of its
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non-descendants (without its parents) given its parents, and

• (iii) the Markov factorization property with respect to the DAG G if

p(x) = p(x1, . . . , xd) =
d∏
j=1

p(xj|PAj(G)), (4.30)

where we assume that PX has a density p.

Assumption 5 (Faithfulness). Consider a distribution PX and a DAG G, PX is faithful to the

DAG G if we know

A ⊥⊥ B|C ⇒ A ⊥⊥ GB|C (4.31)

for all disjoint vertex sets A,B,C.

Similar to the assumption in Factorized MDP, we construct the prior distribution p(G) as an

independent Bernoulli Distribution in the transition causal graph.

p(G) =
∏

i∈[M+N ],j∈[M ]

p(Gij) =
∏

i∈[M+N ],j∈[M ]

pij, (4.32)

where Gij represents the edge from i-th node in source node set U = {A ∪ S} to the j-th node in

target node set V = {S ′} in the bipartite transition causal graph.

On the other hand, for the variational posterior q(G|τ), for the discovered transition causal

graph, it needs to satisfy two constraints: (i) We want q(G|τ) to be a DAG, denoted QDAG, and

more specifically a bipartite graph. We denote such a subset of DAG asQBi, (ii) We want q(G|τ)
to be as sparse as possible.

Common score-based causal discovery works use two regularization terms, ‘DAGNess’ and

ℓ1 regularization to constrain the causal graph discovered in the constraint set, while in our work,

we explicitly constrain the posterior variational distribution q(G|τ) ∈ QBi ⊂ QDAG. We then

show in the following section that by defining a certain independent Bernoulli prior p(G), the

KL divergence between the variational posterior q(G|τ) and p(G) can be equivalent to a sparsity

regularization.

According to our constraint-based causal reasoning modules, QBi consists of M(M + N)

independent binary classifiers (that form a DAG) parameterized by our kernel-based independent
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testing modules ϕ, i.e.

qϕ(G|τ) =
∏

i∈[M+N ],j∈[M ]

qϕ(Gij|τ) ≜
∏

i∈[M+N ],j∈[M ]

qij. (4.33)

Proof of Proposition 2. Let the prior pij = ϵG ∈ (0, 1
2
],∀i ∈ [M + N ], j ∈ [M ], based on the

definition above, the KL divergence term in (4.26) can be expanded as follows:

DKL(qϕ(G|τ)∥p(G)) =
∑
q∈QBi

(∏
i,j

qij

)
log

∏
i,j qij∏
i,j pij

=
∑
i,j

[
qij log

qij
pij

+ (1− qij) log
1− qij
1− pij

]
=
∑
i,j

[
qij log

qij
ϵG

+ (1− qij) log
1− qij
1− ϵG

]
=
∑
i,j

[qij log qij + (1− qij) log(1− qij)− qij log ϵG − (1− qij) log(1− ϵG)] .

(4.34)

Since qij ∈ {0, 1}, limqij→0 qij log qij = limqij→1(1− qij) log(1− qij) = 0,

DKL(qϕ(G|τ)∥p(G)) =
∑
i,j

[−qij log(ϵG)− (1− qij) log(1− ϵG)]

=
∑
i,j

[−I(qij = 1) log ϵG − I(qij = 0) log(1− ϵG)]

=
∑
i,j

[−(1− I(qij = 1)) log(1− ϵG)− I(qij = 1) log ϵG]

= log
1− ϵG
ϵG

∑
i,j

I(qij = 1))−
∑
i,j

log(1− ϵG)

= log

(
1− ϵG
ϵG

)
|qϕ(G|τ)|1 + const

≜ µ|qϕ(G|τ)|1 + const.

(4.35)

Therefore, the KL divergence term is equivalent to a ℓ1 sparsity regularizer in score-based

causal discovery (Brouillard et al., 2020). The strength of this regularizer µ = log
(

1−ϵG
ϵG

)
∈

[0,∞). The larger ϵG in the prior Bernoulli distribution indicates the smaller strength of this

sparsity regularizer (e.g., when ϵG = 1
2
, µ = 0). In the implementation of data-efficient causal

discovery, we adjust the classifier parameter to set the strength of this sparsity constraint.
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We restrict the posterior qϕ(G|τ) to the point mass distribution and use a threshold η to control

the sparsity. We perform the discovery process from the classification perspective by proposing

binary classifiers qϕ(eij|τ, η) to determine the existence of an edge eij . This classifier qϕ(eij|τ, η)
is implemented by statistic Independent Test (Chalupka et al., 2018) and η is the threshold for

the p-value of the hypothesis. A larger η corresponds to harder sparsity constraints, leading to a

sparse G since two nodes are more likely to be considered independent. According to the defini-

tion 12, we only need to perform the classification to the edges connecting the nodes between U
and V . If two nodes are dependent, we add an edge directed from the node in U to the node in

V . This definition also ensures that we always have q(G|τ) ∈ QDAG, whereQDAG is the class of

DAG. With this procedure, we identify a unique CG G∗ under optimality:

Proposition 3 (Identifiability). Given an oracle independent test, with an optimal interventional

data distribution p∗Isπ , causal discovery provides ϕ∗ that correctly tells the independence between

two nodes, then the causal graph is uniquely identifiable, with e∗ij = qϕ∗(eij|τ), ∀i ∈ [M+N ], j ∈
[M ].

We construct our causal model based on the factorized MDP in the assumption 3. According

to the definition, the causal graph is a directed bipartite graph, with st, at on the source side and

st+1 on the target side. For the theoretical analysis part in Section 4.2.2, we denote st+1 as s′, st

as s, at as a and x = {A ∪ S ∪ S ′}, x ∈ R2M+N for simplicity.

Definition 13 (Interventional Family I). For any DAG G, we define the interventional family

I = (I1, I2, · · · , IK). Here, I1 := ∅ corresponds to the pure observational setting. The joint

distribution for the interventional family can be rewritten as:

p(k)(x1, · · · , x[2M+N ]) =
∏
j /∈Ik

p
(1)
j (xj|PAG(xj))

∏
j∈Ik

p
(k)
j (xj|PAG(xj)). (4.36)

Definition 14. For a specific DAG G, we defineM(G) to be the set of strictly positive densities

p : R2|S|+|A| → R which satisfies:

p(x1, · · · , x[2M+N ]) =
∏

j∈[2M+N ]

pj(xj|PAG(xj)), (4.37)
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where
∫
Xj
fj(xj|PAG(xj))dxj = 1 for all PAG(xj) ∈ Xj and all j ∈ [2M +N ].

Definition 15. For a specific DAG G and an interventional family I, we define

MI(G) := {[p(k)]k∈[K] | ∀k ∈ [K], p(k) ∈M(G),∀j /∈ Ik, p(k)j (x|PAG(x)) = p
(1)
j (x|PAG(x))}.

(4.38)

This set of functions is consistent with the condition of strictly positive densities in (4.37) as well

as factorization of the interventional distribution in (4.36).

Definition 16 (I-Markov Equivalence Class, I-MEC). Two DAGs G1 and G2 are I-Markov

equivalent iffMI(G1) =MI(G2). We denote by I −MEC(G1) the set of all DAGs which are

I-Markov equivalent to G1, this is the I-Markov equivalence class of G1.
Lemma 1 (Sufficient and Necessary Conditions for I-MEC (Yang et al., 2018a)). Suppose the

interventional family I is such that I1 := ∅. Two DAGs G1 and G2 are I-Markov equivalent i.f.f.

their I-DAGs GI1 and GI2 share the same skeleton and v-structures.

Proof of Proposition 3. In the bipartite graph (U ,V , E), for the discovered graph Ĝ that is, in the

I-Markov equivalence class of the ground truth causal graph, Ĝ is unique.

Based on the lemma 1, all possible Ĝ that are I-Markov equivalent will share an identical

skeleton with G∗, so we consider only graphs obtained by reversing edges in Ĝ.

Due to the bipartite nature of the transition causal graph defined in Definition 12, for all v-

structured colliders c ∈ C, we know that c ∈ S ′, therefore, reversing any edge of Ĝ will harm the

immorality of Ĝ, and the new graph will no longer be an I-MEC to G∗ Therefore, Ĝ is the only

graph in the I-MEC of G∗, i.e. Ĝ = G∗.

In practice, we use the χ2-test for discrete variables and the Fast Conditional Independent

Test (Chalupka et al., 2018) for continuous variables. The sample size needed to obtain the

Oracle test has been widely investigated (Canonne et al., 2018). However, testing with finite

data is not a trivial problem, as stated in (Shah and Peters, 2020), especially when the data is

sampled from a Goal-conditioned MDP. Usually, the random policy is not enough to satisfy the

oracle assumption because some nodes cannot be fully explored when the task is complicated

and has a long horizon. To make this assumption empirically possible, it is necessary to simulta-

neously optimize πθ(at|st, s∗,G) to access more samples close to completion of the task, which
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is further analyzed in Section 4.2.3. We find that the empirical results support this argument in

Section 4.2.4

Details about Conditional Independence Test

In the previous section, we describe the discovery of a causal graph with edge inference eij ←
qϕ(·|B, η) implemented by a conditional independent test. We ignore the details in that algorithm

about the test process in the main context and thus provide more details in this section.

For discrete variables, we use Pearson’s chi-square test, which is a statistical test applied to

categorical data sets to evaluate how likely it is that any observed difference between sets arose

by chance. In our experiment, we use the implementation provided by Scipy.

We first define the null hypothesis, which is true when two random variables are statistically

independent. These two variables have samples stored in a contingency table O, which has c

columns and r rows. Then, the “theoretical frequency” for a cell is:

Eij = Npi·p·j , pi· =
c∑
j=1

Oi,j

N
, pi· =

r∑
i=1

Oi,j

N
, (4.39)

where N is the total sample size in the table, Oi,j is the sample size of cell (i, j). Then, we can

calculate the value of the test statistic:

χ2 =
r∑
i=1

c∑
j=1

(Oi,j − Ei,j)2
Ei,j

. (4.40)

Now, we can obtain a p-value (falls in [0, 1]) that indicates the significance of this statistic follows

the χ2 distribution from chi-square probability. We compare this p-value with a threshold η and

reject the null hypothesis if the p-value is smaller than η. Therefore, the larger we set η, the

more likely we find that the two variables are dependent. This testing process is summarized in

Algorithm 5.

If the two variables are continuous, we can no longer use the above statistical test. We turn

to a more advanced test method proposed in (Chalupka et al., 2018). The general idea is that if

P (X|Y, Z) = P (X, Y ), Z is not useful as a feature to predict X . To achieve this, the authors
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Algorithm 5: Independence Test for Discrete Variables.
Input: A contingency table O with samples for two variables X and Y .

1 Define the null hypothesis: X and Y are independent.
2 Calculate pi· =

∑c
j=1

Oi,j

N
and pi· =

∑r
i=1

Oi,j

N

3 Calculate expected frequencies Eij = Npi·p·j

4 Calculate the chi-square statistic χ2 =
∑r

i=1

∑c
j=1

(Oi,j−Ei,j)
2

Ei,j

5 Obtain the p-value p from the chi-square probability
6 if p < η then
7 Reject the Null hypothesis, i.e., X and Y are dependent.

Algorithm 6: GRADER Training
Input: Trajectory buffer Bτ , Causal graph G, Transition model fθ, discovery threshold η

1 while θ not converged do
// Policy from planning

2 Sample a goal from the training distribution g ∼ ptrain(g)
3 while t < T do
4 Get action from planner at ← Planner(fθ, st, g)
5 Get the next state from the environment st+1, rt ← Env(at, g)
6 Append new transition to buffer Bτ ← Bτ ∪ {at, st, st+1}

// Estimate causal graph

7 for i ≤M +N do
8 for j ≤M do
9 Infer edge eij ← qϕ(·|B, η)

// Learn transition model

10 Update fθ(G) via (4.27) with B

propose to use decision tree regression to predict Y using both X and Z, and also using Z only.

4.2.3 Analysis of Performance Guarantee

The entire GRADER pipeline is summarized in Algorithm 6. To analyze the performance of

optimization of (4.26), we first list important lemmas that connect the previous steps and then

show that iteration of these steps in GRADER leads to a virtuous cycle.

By the following lemmas, we show the following performance guarantees step by step.

Lemma 2 shows model learning is monotonically better at convergence given a better causal

graph from causal discovery. Then the learned transition model helps to improve the lower

bound of the value function during planning according to the Lemma 4. Lemma 5 reveals the
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connection between policy learning and interventional data distribution, which in turn improves

the quality of causal discovery, as shown in Lemma 6.

Model Learning with Causal Graph

Lemma 2 (Monotonicity of Transition Likelihood). Assume G∗ = (V , E∗) be the true CG, for

two CG G1 = (V , E1) and G2 = (V , E2), if SHD(G1,G∗) < SHD(G2,G∗), ∃ e, s.t. E1∪{e} = E2,
when transition model θ converges, the following inequality holds for the transition model in

(4.26):

log pθ(s
t+1|at, st,G∗) ≥ log pθ(s

t+1|at, st,G1) ≥ log pθ(s
t+1|at, st,G2), (4.41)

where SHD is the Structural Hamming Distance defined in Definition 17.

The optimization in the model learning step can be described below:

argmax
θ

[
∑
t

log pθ(s
t+1|st, at,G)], (4.42)

where τ = [s1, a1, · · · , sT ] is the trajectory in data buffer, and G is the given causal graph.

In the following, we show some necessary definitions and propositions to prove the lemma 2.

Definition 17 (Structural Hamming Distance (SHD)). For any two DAGs G1,G2 with identical

vertices set V , we define the following function SHD: G1 × G2 → R,

SHD(G1,G2) = #{(i, j) ∈ V 2 | G andH have different edges eij}. (4.43)

Definition 18 (Respect the graph). For any given transition model with specific causal graph G,

the transition model respects the graph if the distribution p(st+1|at, st,G) can be factorized as:

p(s′|s, a,G) =
∏
i∈[M ]

p(s′i|PA(s′i),G), (4.44)

where M is the total number of factorized states, PA(·) represents the parents in the causal

graph.
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Proposition 4 (GRU model respects the graph). As the parameterized transition model pθ(s′|s, a,G)
reaches steady state, it respects the graph.

Proof of Proposition 4. The GRU modules with parameter θ = [W,U ] can be rewritten as a

message passing process, where AGG·(·) is the iterative aggregation function.

Node Encoder : h(0)j = fencoder(xj),

Aggregation : h
(ℓ)
j = AGGi∈N (j)(fθ(x

(ℓ−1)
j , h

(ℓ−1)
i )),

Node Decoder : x(ℓ)
i = fdecoder(h

(ℓ−1)
j ).

(4.45)

As an iterated process of message passing, where the input causal graph controls the information

flow between different entities, this GRU model can be rewritten as a fixed point iteration (Gilboa

et al., 2019):

x
(ℓ)
i = Fθ(PA(xi)

(ℓ−1),x
(ℓ−1)
i ). (4.46)

With proper initialization and some sufficient conditions provided by (Gilboa et al., 2019), F has

a unique equilibrium point, where

x∞i = Fθ(PA(xi)
∞,x∞i ). (4.47)

In our bipartite graph, when GRU reaches the equilibrium point, we can get a structural causal

model:

s′i = Fθ(PA(s′i), si), where s′i ∈ S ′,PA(s′i) ∈ S ∪ A. (4.48)

Based on the SCM derivation 4.48, we can then factorize the transition model as:

pθ(s
′|s, a,G) =

∏
i∈[M ]

pθ(s
′
i|PA(s′i),G). (4.49)

We denote the ground truth causal graph as G∗ = (V , E∗), and PA∗(s′i) as the true parents of s′i

in G∗.

Definition 19 (Causal optimality at equlibrium point). For any G′ ̸= G∗ with at least one pair
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of flawed parental relationship PA′(s′i) ̸= PA∗(s′i), the following inequality holds:

pθ(s
′
i|PA′(s′i),G) ≤ pθ(s

′
i|PA∗(s′i),G). (4.50)

Lemma 3 (Local monotonicity). Given one state variable si and its parental relationship PA1(si),PA2(si),

if #(PA1(si) ∪ PA∗(si)) ≥ #(PA2(si) ∪ PA∗(si)), then in steady state, the SCM derived in 4.48

will miss part of the message provided from the true parents; therefore pθ(s′i|PA1(s′i),G1) ≥
pθ(s

′
i|PA2(s′i),G2)

Proof of Lemma 2. Based on the factorization defined in 4.49, we denote the parental relation-

ship in G1 as PA1(·),

pθ(s
′|a, s,G∗) =

∏
i∈[M ]

pθ(s
′
i|PA∗(s′i),G) ≥

∏
i∈[M ]

pθ(s
′
i|PA1(s′i),G) = pθ(s

′|a, s,G1). (4.51)

For G1 and G2, suppose the only different edges e has a target node s′j , with SHD(G1,G∗) <
SHD(G2,G∗), based on Lemma 3:

pθ(s
′|a, s,G1) = pθ(s

′
j|PA1(s′j),G1)

∏
i∈[M ]\j

pθ(s
′
i|PA1(s′i),G1)

≥ pθ(s
′
j|PA2(s′j),G2)

∏
i∈[M ]\j

pθ(s
′
i|PA1(s′i),G2)

= pθ(s
′
j|PA2(s′j),G2)

∏
i∈[M ]\j

pθ(s
′
i|PA2(s′i),G2)

= pθ(s
′|a, s,G2).

(4.52)

Based on the inequality derived in 4.51 and 4.52,

log pθ(s
′|s, a,G∗) ≥ log pθ(s

′|s, a,G1) ≥ log pθ(s
′|s, a,G2). (4.53)

The monotonicity of likelihood in Lemma 2 is proved.
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Transition Model and Value Function

Lemma 4 (Bounded Value Function in Policy Learning). Given a planning horizon H →∞, if

we already have an approximate transition model DTV(p̂(s
′|s, a), p(s′|s, a)) ≤ ϵm, the approxi-

mate policy π̂ achieves a near-optimal value function:

∥V π∗
(s)− V π̂(s)∥∞ ≤

γ

(1− γ)2 ϵm. (4.54)

We could define a more general form of the goal-conditioned reward based on distance:

r(s, g) = 1 − d(s′, g). Where D is a (normalized) distance measure between two vectors in the

state space, s.t. ∀s, g ∈ S , 0 ≤ d(s, g) ≤ 1. For example, if we choose d(s, g) = 1(s ̸= g),

the derived reward under this distance measure will go back to the reward function defined in

Section 4.1.1. By defining a (normalized) ℓp distance between s′ and g:

d(s, g) =
∥s− g∥p

maxs1,s2∈S ∥s1 − s2∥p
, (4.55)

we can also shape a continuous form of goal-conditioned step reward r(s, g) between 0 and 1.

Notice that all the Euclidean-based distances are all valid metrics with symmetry, non-negativity,

the identity of indiscernibles, and the triangle inequality. With such a definition, the estimated

value function will fit in with:

V (s) ≤ 1−W(pIsπ , pg)

1− γ , (4.56)

where W is some Wasserstein distance between the marginal state distribution and the goal

distribution. Therefore, optimizing the value of Q is equivalent to minimizing an upper bound

for some types of statistical distance between the goal distribution and the target distribution.

For the term related to policy in (4.26), we define the goal-conditioned policy distribution as:

π(at|st, g) ∝ exp(Q(st, at)). (4.57)

As a result, argmaxπ
∑T−1

t=0 log πθ(a
t|st, s∗,G) = argmaxπ

∑T−1
t=0 Q(s

t, at) However, the real
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Q(st, at) is intractable, so we alternatively optimize the Q̂(st, at) at each time step. Next, we

start to derive a bound between Q̂(s, π̂(s)) and Q(s, π∗(s)).

Proof of Lemma 4. For simplicity, we denote the learned transition function p̂(s′|s, a) = pθ(s
′|s, a,G),

which is ϵm-approximate dynamics, DTV(p̂, p) = ∥p̂(s′|s, a)−p(s′|s, a)∥∞ ≤ ϵm. First, we show

by value iteration that the estimated value function V̂ (s) will converge to V (s): Assume that

there exists K > 0, st. ∀k > K, ∥p̂(s′|, s, a)− p(s, |s, a)∥∞ ≤ ϵm

V̂ (k+1)(s) = r(s, π(s)) + γ
∑
s′

p(s′|s, π(s))V̂ (k)(s). (4.58)

Given the result of the Bellman Contraction,

∥V̂ (k+1)(s)− V π∗
(s)∥∞ ≤ γ∥V̂ (k)(s)− V π∗

(s)∥∞. (4.59)

lim
k→∞
∥V̂ (k+1)(s)− V π∗

(s)∥∞ = 0. (4.60)

Based on the definition of greedy policy in planning: π̂(s) = argmaxa∈A Q̂(s, a), we can

derive the inequality:

r(s, π̂(s)) + γ
∑
s′

p̂(s′|s, π̂(s))V̂ (s′) ≥ r(s, π∗(s)) + γ
∑
s′

p̂(s′|s, π∗(s))V̂ (s′). (4.61)

r(s, π∗(s))− r(s, π̂(s)) ≤ γ

[∑
s′

p̂(s′|s, π̂(s))V̂ (s′)−
∑
s′

p̂(s′|s, π∗(s))V̂ (s′)

]
. (4.62)

We can get the following results with ∥V̂ (s)− V π∗
(s)∥∞ → 0:

r(s, π∗(s))− r(s, π̂(s)) ≤ γ

[∑
s′

p̂(s′|s, π̂(s))V π∗
(s′)−

∑
s′

p̂(s′|s, π∗(s))V π∗
(s′)

]
. (4.63)
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Let s be the state with the largest error of the value.

V π∗
(s)− V π̂(s)

=r(s, π∗(s))− r(s, π̂(s))

+ γ
[∑

s′

p(s′|s, π∗(s))V π∗
(s′)−

∑
s′

p(s′|s, π̂(s))V π̂(s′)
]

≤γ
∑
s′

[
p̂(s′|s, π̂(s))V π∗

(s′)− p̂(s′|s, π∗(s))V π∗
(s′)
]

+ γ
∑
s′

[
p(s′|s, π∗(s))V π∗

(s′)− p(s′|s, π̂(s))V π̂(s′)
]

=γ
∑
s′

[
p(s′|s, π∗(s))− p̂(s′|s, π∗(s))

]
V π∗

(s′)− γ
∑
s′

[
p(s′|s, π̂(s))− p̂(s′|s, π̂(s))

]
V π∗

(s′)

+ γ
∑
s′

p(s′|s, π̂(s))
[
V π∗

(s)− V π̂(s)
]
.

(4.64)

Since r(s, g) ∈ [0, 1], the value function V (s) ∈ [0, 1
1−γ ], also by ∥p̂(s′|s, π̂(s))−p(s′|s, π̂(s))∥ ≤

ϵ, we have

V π∗
(s)− V π̂(s) ≤ γϵm(Vmax − Vmin) + γ

∑
s′

p(s′|s, π̂(s))
[
V π∗

(s)− V π̂(s)
]

=
γϵm
1− γ + γ

∑
s′

p(s′|s, π̂(s))
[
V π∗

(s′)− V π̂(s′)
]
.

(4.65)

We already analyzed the state s with the largest value error, and it is sufficient to show:

∥V π∗
(s)− V π̂(s)∥∞ ≤

γϵm
1− γ + γ

∑
s′

p(s′|s, π̂)∥V π̂(s)− V π∗
(s)∥∞

=
γϵm
1− γ + γ∥V π∗

(s)− V π̂(s)∥∞.
(4.66)

By combining ∥V π∗
(s)− V π̂(s)∥∞ on both sides, we have

∥V π∗
(s)− V π̂(s)∥∞ ≤

γ

(1− γ)2 ϵm. (4.67)
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Policy Learning Improves Interventional Data Distribution

Lemma 5. With a step reward r(s, a) = 1(s = g), we show that the value function determines

an upper bound for TV divergence between the interventional distribution with its optimal:

DTV(pIsπ , pg) ≤ 1− (1− γ)V π(s). (4.68)

where pIsπ is the marginal state distribution in interventional data, and pg is the goal distribution.

A better policy with larger V π(s) enforces the distribution of interventional data toward the goal.

The optimization in the planning part is:

max
π

T−1∑
t=0

log πθ(a
t|st,G, s∗) = max

[a0,··· ,aT−1]

T−1∑
t=0

log Q̂(st, at). (4.69)

Ideally, given access to real dynamics p(s′|s, a) and goal distribution p(g). We first define the

expected goal-conditioned state-action reward r(s, a, g) = Es′∼p(·|s,a)r(s′, g), and the expected

state-action reward r(s, a) = Eg∼pg(·)r(s, a, g). In practice, due to the inaccuracy of the tran-

sition model, we can only query the following reward estimate for a certain state-action pair:

r(s, a, g) = Es′∼pθ(·|s,a,G)r(s′, g), r(s, a) = Eg∼pg(·)r(s, a, g).

Then we consider the distribution of the goal g ∼ pg(·), which is supported in the state space

S. Based on Algorithm 6, our interventional data is collected by the MPC that maximizes the

expected discounted cumulative reward of the learned dynamics. Thus, we could denote the

interventional distribution of state (depending on the current policy π) in the data buffer as pIsπ ,

s ∼ pIsπ(·) which is also supported in the state space S.

Proof of Lemma 5. Assume our planning algorithm has an infinite planning horizon, with the

optimal transition dynamics and optimal policy, the action-value function Q∗ can be expressed

as:

Q∗(st, at)
def
= Es∼pIs

π∗ (·),a∼π
∗(s)

[
∞∑
t′=t

γt
′−tr(st

′
, at

′
) | st, at

]
. (4.70)
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The estimation of action value function Q̂(st, at) = Qπ̂
θ,G(s

t, at) can be written as:

Q̂(st, at)
def
= Es∼pIs

π̂
(·),a∼π̂(s)

[
∞∑
t′=t

γt
′−tr(st

′
, at

′
) | st, at

]

= Ea∼π̂(s)

[
∞∑
t′=t

γt
′−tEg∼pg(·),s∼pIs

π̂
(·)(1− 1(s′ = g)) | st, at

]
.

(4.71)

The policy by MPC in algorithm 6 can be deducted by: π̂(st) = argmaxat∈A Q̂(s
t, at), let

s0 = s, and we could derive value function under the MPC policy as follows:

V (s) =
∞∑
t=0

γtEpgEpIs
π
1(s = g) =

∞∑
t=0

γtEpgEpIs
π
[1− 1(s ̸= g)]

=
∞∑
t=0

γt −
∞∑
t=0

γtEpgEpIs
π
1(s ̸= g)

≤
1− DTV (pIsπ̂ , pg)

1− γ .

(4.72)

where DTV(pIsπ , pg) is the total variation distance between the marginal state distribution pIsπ in

the data buffer, as well as the goal distribution pg, both of which share the same support.

Interventional Data Benefits Causal Discovery

Lemma 6. For ϵg = minpg>0 pg, DTV(pIsπ , pg) < ϵg, the error of our causal discovery is upper-

bounded with EĜ[SHD(Ĝ,G∗)] ≤ |S| − 1.

Before we put the formal proof, we first list several assumptions that are quite common in

the causal discovery literature (Addanki et al., 2020).

Assumption 6 (Oracle Conditional Independence Test). The conditional independent test could

tell the independence between any two variables in the causal graph.

Proof of Lemma 6. Given the Oracle conditional independence test in 6, if the state distribution

covers all the support of the goal distribution, with abundant actions from the action space, we

can cover all the connections between the current state and the next states.

When DTV(pIsπ , pg) < ϵg, it is sufficient to derive that pIsπ(s) > 0,∀s ∈ Suppg, where Suppg
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is the support set of the goal distribution pg.

We then discuss the three possible circumstances under such a condition:

• Case 1: Both the source state and target state distributions in the buffer are fully supported

in Suppg. In this case, given our assumption 6 and abundant samples, our causal discovery

qϕ(G|τ) will correctly classify all the edges of the transition of the causal graph.

• Case 2: Only the target state distribution is supported on Suppg, while the source side is

away from the goal node. In this case, independent tests may not be able to distinguish

the (in)dependence relationship between goal nodes and other state nodes, SHD(Ĝ,G∗) ≤
|S| − 1.

• Case 3: Only the source state is supported on Suppg, while the target side is away from

the goal node. This case corresponds to the case where some initial states hit the goal,

while the learned transition model and policy fail to guide the future states to the goal. The

causal discovery model ϕ may falsely classify the edges of all the source states (except the

source goal state) toward the target goal states. Thus, SHD(Ĝ,G∗) ≤ |S| − 1.

In conclusion, for all the three cases that satisfy DTV(pIsπ , pg) ≤ ϵg, we have

EĜ∼qϕ(·|τ)
[
SHD(Ĝ,G∗)

]
≤ max
Ĝ∼qϕ(·|τ)

[
SHD(Ĝ,G∗)

]
≤ |S| − 1. (4.73)

After the close-loop analysis of our model, we are now able to analyze the overall perfor-

mance of the proposed framework. Under the construction of pθ(st+1|at, st,G) with NN pa-

rameterized functions, the following theorem shows that the learning process will guarantee the

accurate estimation of the true ELBO under iterative optimization between model learning, plan-

ning, and causal discovery.

Theorem 2. With T-step approximate transition dynamics DTV

(
p̂(s′|s, a), p(s′|s, a)

)
≤ ϵm, if the

goal distribution satisfies ϵg > γ
1−γ ϵm, and the distribution prior CG is entry-wise independent
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Bernoulli(ϵG), GRADER guarantees to achieve an approximate ELBO Ĵ to the true ELBO J ∗:

∥J ∗(θ, ϕ)− Ĵ (θ̂, ϕ̂)∥∞ ≤
[
1 +

γ

(1− γ)2
]
ϵmT + log

(
1− ϵG
ϵG

)
(|S| − 1), (4.74)

An intuitive understanding of the performance guarantee is that a better transition model in-

dicates a better approximation of the objective J . Based on all the derivations from the previous

sections, we finally give the proof of the overall performance of the iterative optimization in

GRADER.

Proof of Theorem 2. Let dmax = maxs1,s2∈S ∥s1 − s2∥2, dθ = ∥ŝ′(θ) − s′∥2, then the log likeli-

hood term becomes

pθ(s
′|s, a) ∝ exp(dmax − dθ). (4.75)

In the model learning part, since we take the log space, we have log pθ(s
′|s, a) = (dmax −

dθ) − C. We neglect the constant term C when deriving the bound. Without loss of generality,

we set pθ(s′|s, a) = exp(dmax − dθ), log pθ(s′|s, a) = dmax − dθ in (4.26). As dmax − dθ ≥ 0,

we have the Lipchitz L ≤ 1 of log function,

∥∥∥ log p̂(s′|s, a)− log p(s′|s, a)
∥∥∥
∞
≤ L

∥∥∥p̂(s′|s, a)− p(s′|s, a)∥∥∥
∞
≤
∥∥∥p̂(s′|s, a)− p(s′|s, a)∥∥∥

∞
≤ ϵm.

(4.76)

Based on Lemma 4, we have the policy learning term

∥∥∥ log π̂(a|s, g)− log π∗(a|s, g)]
∥∥∥
∞

=
∥∥∥Q̂(s, π̂(s))−Q(s, π∗(s))∥∥∥

∞

=
∥∥∥Q(s, π̂(s))−Q(s, π∗(s))∥∥∥

∞

=
∥∥∥V π̂(s)− V π∗

(s)
∥∥∥
∞
≤ γ

(1− γ)2 ϵm.

(4.77)

For the KL divergence term, if the goal distribution satisfies ϵg > γ
1−γ ϵm, the following

conditions hold:

V π̂(s) > V π∗
(s)− γ

(1− γ)2 ϵm. (4.78)
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According to Lemma 5 and the condition that V (s) ∈ [0, 1
1−γ ],

DTV(pIsπ , pg) ≤ 1− (1− γ)V π̂(s) < 1− (1− γ)V π∗
(s) +

γ

1− γ ϵm = (1− γt∗−1) + ϵg
t∗=1
= ϵg,

(4.79)

where t∗ is the shortest time step to reach the goal. We assume t∗ = 1 for the optimal policy in

the theoretical design part, while in practice the bound loosens for larger t∗ or smaller γ.

Since DTV(pIsπ , pg) ≤ ϵg, according to Lemma 6, we have

∥∥∥DKL(qϕ||p)− DKL(q
∗
ϕ||p)

∥∥∥
∞

=
∥∥∥ log(1− ϵG

ϵG

)
∥qϕ(G|τ)∥1 − log

(
1− ϵG
ϵG

)
∥q∗ϕ(G|τ)∥1

∥∥∥
∞

= log

(
1− ϵG
ϵG

)∥∥∥∥qϕ(G|τ)∥1 − ∥q∗ϕ(G|τ)∥1∥∥∥∞
≤ log

(
1− ϵG
ϵG

)∥∥∥qϕ(G|τ)− q∗ϕ(G|τ)∥∥∥∞
= log

(
1− ϵG
ϵG

)
max
G

[
SHD(G,G∗)

]
≤ log

(
1− ϵG
ϵG

)(
|S| − 1

)
.

(4.80)

Finally, we can derive the overall performance guarantee as follows:

∥J ∗(θ, ϕ)− Ĵ (θ̂, ϕ̂)∥∞

=
∥∥∥ T−1∑
t=0

{[
log p̂(st+1|st, at)− log p(st+1|st, at)

]
+
[
log π̂(at|st, s∗)− log π∗(at|st, s∗)

]}
+
[
DKL(q̂ϕ||p)− DKL(q

∗
ϕ||p)

]∥∥∥
∞

≤
T−1∑
t=0

(
ϵm +

γ

(1− γ)2 ϵm
)
+ log

(
1− ϵG
ϵG

)(
|S| − 1

)
=
[
1 +

γ

(1− γ)2
]
ϵmT + log

(
1− ϵG
ϵG

)(
|S| − 1

)
.

(4.81)
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Figure 4.9: Environments used in experiments.

Table 4.3: Environment configurations used in experiments

Parameters Stack Unlock Crash Chemistry

Max step size 5 15 30 10
State dimension 50 110 22 100

Action dimension 12 8 8 100
Action type Discrete Discrete Continuous Discrete

4.2.4 Experiment and Analysis

In this section, we first discuss the setting of our designed environments, as well as the baselines

used in the experiments. Then, we provide numerical results and detailed discussions to answer

the following important research questions: Q1. Compared to existing strong baselines, how

does GRADER gain performance improvement under both in-distribution and generalization

settings? Q2. Compared to a random offline policy, how does a well-trained policy improve the

results of causal discovery? Q3. Compared to score-based causal discovery, does the proposed

data-efficient causal discovery pipeline guarantee the identification of the true causal graph as

stated in Section 4.2.2? Q4. Considering the correctness of causal graphs, how does the imper-

fect causal graph influence the task-solving performance of GCRL agents?

Environments and Baselines

Since most commonly used RL benchmarks do not explicitly require causal reasoning for gen-

eralization, we design three new environments in addition to the Chemistry (Ke et al., 2021)

environment, which are shown in Figure 4.9. These environments use the true state as obser-

vation to disentangle the reasoning task from visual understanding. For each environment, we
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design three settings – in-distribution (I), spuriousness (S), and composition (C) – corresponding

to different goal distributions for generalization. We use ptrain(g) and ptest(g) to represent the

goal distribution during training and testing, respectively. I uses the same ptrain(g) and ptest(g),

S introduces spurious correlations in ptrain(g) but remove them in ptest(g), and C contains more

sub-goals in ptest(g) than in ptrain(g). The details of these settings are briefly summarized in the

following.

• Stack: We design this manipulation task inspired by the CausalWorld (Ahmed et al., 2020),

where the agent must stack objects to match specific shapes and colors. In Stack-S, we let

the same shape have the same color in ptrain(g) but randomly sample the color and shape in

ptest(g). In Stack-C, the maximum number of objects is two in ptrain(g) but five in ptest(g).

• Unlock: We designed this indoor housekeeping task for the agent to collect a key to open the

doors. This environment is built on the Minigrid (Chevalier-Boisvert et al., 2018). In Stack-S,

the door and the key are always in the same row in ptrain(g) but uniformly sampled in ptest(g).

In Unlock-C, there are one door in ptrain(g) but two doors in ptest(g).

• Crash: The occurrence of accidents is usually based on causality, for example, an autonomous

vehicle (AV) collides with a jaywalker because its view is blocked by another car (Tavares

et al., 2021). We design such a crash scenario based on highway-env (Leurent, 2018), where

the goals are to create crashes between a pedestrian and different AVs. In Stack-S, the initial

distance between the AV and the pedestrian is constant in ptrain(g) but irrelevant in ptest(g). In

Stack-C, there is one pedestrian in ptrain(g) but two in ptest(g).

• Chemistry (Ke et al., 2021): There are 10 nodes with different colors. An underlying causal

graph controls the color-changing mechanism of all nodes. In one step, the agent changes the

color of one node. The goal is to match the given colors of all nodes. In the spuriousness

setting, we let all nodes have the same target color. There is no composition setting in this

environment.

We use the following methods as our baselines to fairly demonstrate the advantages of

GRADER. SAC: (Haarnoja et al., 2018) Soft Actor-Critic is a well-known model-free RL method

that uses entropy to increase the diversity of action. ICIN: (Nair et al., 2019) It uses DAg-

ger (Ross et al., 2011) to learn the goal-conditioned policy with the causal graph estimated
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Table 4.4: Success rate (%) for nine settings in three environments. Bold font means the best.

Method Stack-I Stack-S Stack-C Unlock-I Unlock-S Unlock-C Crash-I Crash-S Crash-C

SAC 34.7±16.1 22.1±14.0 31.7±5.1 0.1±0.5 0.0±0.2 0.4±1.7 22.5±17.6 18.6±8.7 6.7±3.8
ICIN 71.8±6.9 71.0±7.4 58.6±8.3 31.7±9.6 32.7±8.6 31.5±8.5 27.9±6.1 15.8±17.2 7.8±8.8
PETS 97.2±6.9 77.7±13.5 73.7±10.3 59.5±7.2 20.6±5.9 28.3±10.0 52.3±11.5 44.6±12.5 37.1±5.1
TICSA 85.9±8.4 88.8±10.1 76.2±8.3 58.5±12.3 33.6±14.3 29.8±8.3 68.9±5.9 56.8±8.6 15.0±8.2
ICIL 93.7±5.9 81.2±14.4 62.8±13.0 67.1±11.6 15.9±4.7 53.6±15.3 55.3±20.9 21.7±17.7 14.3±7.3
GNN 45.7±9.1 39.0±10.4 41.7±8.6 3.4±2.3 3.4±2.4 4.5±3.0 4.2±4.0 5.1±5.1 3.8±2.8

Score 92.7±7.4 90.5±7.5 73.9±8.5 44.9±28.1 23.1±7.6 36.2±30.1 42.3±17.5 53.4±18.7 8.4±6.1
Full 92.9±6.3 86.0±9.5 75.7±10.3 63.8±9.2 18.3±7.4 53.7±14.3 69.8±14.0 52.6±12.8 42.0±17.2
Offline 96.8±5.8 95.4±6.1 81.4±7.8 13.8±8.1 13.9±7.5 11.7±6.9 13.1±16.2 30.2±16.5 14.9±12.4
GRADER 95.6±5.4 97.6±6.0 93.7±8.4 64.2±9.1 61.4±4.4 82.1±9.2 91.5±4.4 84.3±10.0 84.7±7.3

from the expert policy. We assume that it can access the true causal graph for supervised

learning. PETS: (Chua et al., 2018) We consider the ensemble transition model with random

shoot planning as a baseline, which achieves generalization with the uncertainty-aware design.

TICSA: (Wang et al., 2021d) This is a causal-augmented MBRL method that simultaneously

optimizes a soft adjacent matrix (representing causality) and a transition model. ICIL: (Bica

et al., 2021) This method proposes an invariant feature learning structure that captures the im-

plicit causality of multiple tasks. We only use it for transition model learning since the original

method is designed for imitation learning. GNN: (Schlichtkrull et al., 2018) Since graph neural

networks are good at learning structural information, we implement a GNN-based baseline using

a Relational Graph Convolutional Network.

Dtails of Environment Design

More details about the design of the environments are summarized in the following. The basic

parameters of all environments can be found in Figure 4.3.

Stack: Manipulation is important for household and factory assembly. Sometimes, the color

of the object is not relevant to the task but may leak information by sharing spuriousness with

the task. Also, the goal could be composed of several previously seen goals, such as repeating

similar actions. Totally, we have 5 different shapes and 5 different colors and the goals are some

combinations of the colors and shapes. At each step, the agent can stack an object with a chosen

color and shape or stop stacking. The state is the colors and shapes of all current objects. The

agent receives a positive reward when the goal is achieved and a punishment if it stacks a new
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object.

Unlock: Collecting specific objects to meet the required conditions is useful for mobile

robots. In this environment, there is a causality between the key and the door. The action contains

six operations, including four-direction movements (Move), pick key (Pick Key), and open door

(Open Door). The state is the position of the agent, the position of the key, and the status of the

door. In the first generalization setting, we intentionally create a spurious correlation between the

position of the key and the door. If the agent figures out that the key can open the door regardless

of its position, it will ignore the spurious correlation. In the second generalization setting, we

increase the number of doors from one to two. This setting contains two sub-tasks and can be

used to test the compositional generalization.

Crash: The causality in this environment is mainly between the pedestrian (Ped), the ego

vehicle (Ego), and another vehicle (Car 1) (Ding et al., 2022b). The collision between Ped and

Ego only occurs when the view of Ego is blocked by Car 1. To make this happen, we designed

a rule-based AV that will brake if it detects any obstacles within a certain distance. Therefore, if

the pedestrian directly hits the AV, the AV will stop and the crash will not occur. To make this

task difficult, we also placed two other vehicles (Car 2 and Car 3) on the scene, but they will not

interrupt the crash scenario. The agent can control the acceleration and steering of Ped, Car 1,

Car 2, and Car 3. The state is the position and velocity of all objects plus the status of whether

a collision occurs. To create a spurious correlation, we fix the initial distance between Ego and

Ped to a constant, since this creates a shortcut for the feature extractor. However, remembering

this distance is not enough since we change the initial distance in the testing stage.

Chemistry: Please refer to (Ke et al., 2021) for more details.

Results Discussion

Next, we show the results to answer the following four research questions.

Overall Performance (Q1). We compare the test reward of all methods under nine tasks and

summarize the results in Table 4.4 to demonstrate overall performance. Generally, our method

outperforms the baselines in all tasks except Stack-I because this task is too simple for all meth-

ods. We note that the gap between our method and baselines in S and C settings is more signifi-
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Figure 4.10: Left: Test reward of the Crash environment. Right: Accuracy of causal graph

discovery.

Table 4.5: Results on Chemistry environment (GRADER/Score). Bold font means the best.

Metric Collider Chain Jungle Full

SHD (↓) 3.70±1.79/15.4±7.03 2.80±1.83/14.0±1.18 7.00±2.19/13.8±0.40 2.40±1.20/11.0±5.31

Accuracy (↑) 0.99±0.00/0.87±0.06 0.99±0.00/0.88±0.01 0.98±0.00/0.89±0.00 0.99±0.00/0.91±0.09

Precision (↑) 0.90±0.05/0.73±0.10 0.94±0.04/0.79±0.03 0.86±0.04/0.88±0.01 1.00±0.00/1.00±0.00

Recall (↑) 0.99±0.02/0.83±0.07 0.96±0.03/0.73±0.00 0.96±0.02/0.73±0.00 0.96±0.02/0.83±0.17

F-score (↑) 0.94±0.03/0.77±0.06 0.95±0.03/0.76±0.02 0.91±0.03/0.80±0.00 0.98±0.01/0.90±0.10

cant than in the I setting, showing that our method still works well in the nontrivial generalization

task. As a model-free method, SAC fails in all three tasks of Unlock and Crash environments

since they have very sparse rewards. Without learning the causal structure of the environment,

PETS even cannot fully solve Unlock-S, Unlock-C, and all Crash tasks. Both TICSA and ICIL

learn the causality underlying the task so that they are relatively better than SAC and PETS.

However, they are still worse than GRADER in two generalization settings due to the unstable

and inefficient causal reasoning mechanism. We also find that even if ICIN is given the true

causal graph, the policy learning part cannot efficiently leverage the causality, leading to worse

performance in generalization settings.

To further analyze the learning trend, we plot the curves of all the methods in Crash in

Figure 4.10. Our method quickly learns to solve tasks at the beginning of training, demonstrating

high data efficiency. GRADER also outperforms other methods with large gaps in the later

training phase. The training figures for the other two environments can be found in 4.2.4.
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Figure 4.11: The testing reward and causal discovery results of Stack environment.

Importance of Policy Learning (Q2). As we mentioned in Section 4.2.2, we empirically

compare GRADER and Offline (Zhu et al., 2022), which uses data collected from offline random

policy, and plot results in the right part of Figure 4.10. We use SHD (Tsamardinos et al., 2006)

to compute the distance between the estimated causal graph and the true causal graph. The true

causal graph for each environment can be found in 4.2.4. When we only use samples collected

offline by random policy, we cannot obtain values of nodes in G that require long-horizon rea-

soning, for example, the door can be opened only if the agent is close to the door and has the key.

As a consequence, the causal graph obtained by the Offline method harms the performance, as

shown in Figure 4.10. Instead, GRADER gradually explores more regions and quickly obtains

the true causal graph when we iteratively discover the causal graph and update the policy.

Advantage of Data-efficient Causal Discovery (Q3). To show the advantage of the pro-

posed constraints-based methods, we design a model named Score that optimizes a soft adjacent

matrix using the score-based method (Brouillard et al., 2020), which has recently been combined

with NN for differentiable training, for example, in TICSA. According to the precision of the

discovery shown in the right part of Figure 4.10, we find that score-based discovery is inefficient.

Based on the performance of the Score model summarized in Table 4.4, we also conclude that it

is not as good as our constraint-based method and has a large variance due to unstable learning

of the causal graph.

Influence of Causal Graph (Q4) To illustrate the importance of the causal graph, we im-

plement another variant of GRADER named Full, which uses a fixed full graph that connects
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Figure 4.12: The testing reward and causal discovery results of Unlock environment.

Figure 4.13: Influence of different causal graphs in Unlock-S.

all nodes between the sets U and V . According to the performance shown in Table 4.4 and Fig-

ure 4.10, we find that the full graph achieves worse results than GRADER due to the redundant

and spurious correlation. Intuitively, unrelated information causes additional noises in the learn-

ing procedure, and spurious correlation creates a shortcut that makes the model extract wrong

features, leading to worse results in spuriousness generalization as shown in Table 4.4.

We then investigate how the correctness of the causal graph influences the performance. We

used fixed graphs interpolating from the best causal graph to the full graph to train a GRADER

model in Unlock-S and summarize the results in Figure 4.13. The more correct the graph, the

higher reward the agent obtains, which supports our statements in Section 4.2.3 that the causal

151



Figure 4.14: Reward of Chemistry environment under ID and OOD setting.

graph is important for the reasoning tasks – a better causal graph helps the model to have better

task-solving performance.

Overall Performance on Other Environments

The overall performance results corresponding to Table 4.4 for Stack and Unlock environments

are shown in Figure 4.11 and Figure 4.12.

In all Stack experiments, we find that the advantage of GRADER over other methods is small.

The reason is that this task is simple and the true causal graph only contains 7 nodes as shown

in Figure 4.2.4. Due to the simple causal graph, even the offline random policy can obtain the

true causal graph, so there is almost no difference between the discovery efficiency between

GRADER and Offline as shown in the right part of Figure 4.11.

In the Unlock-I experiment, there is no gap between GRADER and Full, which means that

the causal graph may not have many contributions to solving this task. However, there are large

gaps in Unlock-S and Unlock-C settings since indicating that the causal graph helps the model

to obtain better generalizable performance. As for the Offline method, since the causal graph is

wrongly discovered, the performance is bad in all three settings.
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Figure 4.15: Top: Discovered causal graph from GRADER. Bottom: true causal graph.

Table 4.6: Success rate (%) for Chemistry environment (ID). Bold font means the best.

Env SAC ICIN PETS TICSA ICIL GNN GRADER Score Full

Collider 0.0±0.0 29.8±7.2 0.6±0.8 70.1±4.2 1.3±1.3 7.3±4.3 85.5±3.4 53.0±4.1 70.3±5.3
Chain 1.1±1.3 37.5±4.0 29.6±4.9 24.5±4.3 25.3±5.1 24.6±14.5 77.0±3.2 60.2±2.4 72.7±5.3
Jungle 0.6±0.8 20.2±1.5 18.8±5.2 31.8±4.5 20.6±3.9 27.5±9.8 69.6±4.3 63.0±2.3 59.4±9.5
Full 0.5±0.8 4.5±4.0 23.7±4.3 10.4±3.0 22.3±5.1 20.4±7.8 59.1±6.6 39.4±3.5 47.1±6.1

Analysis of Discovered Causal Graph

In the Chemistry experiment, the downstream task is to change the color of the nodes to match

the given colors within maximum steps (T = 10). A reward r = 1 is received if all colors are

matched. The results are reported with 200 episodes. We use the planning horizon H = 5. We

provide the results of the RL downstream tasks in Table 4.6 (ID setting) and Table 4.7 (OOD

setting). The test reward is shown in Figure 4.14. The graphs in the ID setting have 10 nodes,

while those in the OOD setting have 5 nodes. In the ID setting, we randomly sample the target

colors in the goal. In the OOD setting, we set the target colors of all nodes to the same color

during training to create spurious correlations, then randomly set the target colors during testing.
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Figure 4.16: Discovered causal graphs of three environments. (Action, State, Next state)

Table 4.7: Success rate (%) for Chemistry environment (OOD). Bold font means the best.

Env SAC ICIN PETS TICSA ICIL GNN GRADER Score Full

Collider 0.0±0.0 53.3±1.6 87.2±8.5 96.6±1.4 97.0±2.0 72.8±7.5 95.8±2.6 92.4±3.5 87.8±4.4
Chain 0.0±0.0 27.3±5.9 37.1±7.0 54.0±3.8 50.0±5.8 3.9±1.6 82.3±4.5 46.8±5.0 52.9±4.3
Jungle 0.8±2.4 42.6±4.9 53.9±5.5 43.1±7.5 52.9±7.0 11.1±2.4 84.4±5.1 59.5±2.7 60.8±3.5
Full 0.0±0.0 28.9±5.0 43.5±4.1 55.9±4.5 42.2±5.9 3.8±2.5 83.9±4.4 50.7±6.0 54.2±4.1

Since the environments we designed have clear and explicit causality, we can get the true

causal graph with human analysis. We plot the true causal graphs corresponding to the three

environments in Figure 4.16, where the semantic meanings of all nodes are explained in 4.2.4.

We observe that the causal graphs are sparse with very few edges, indicating that non-causal

methods that use the full graph may import redundant or even wrong information.

We also conduct a further analysis of the discovery performance on the Chemistry environ-

ment (Ke et al., 2021), which is a standard benchmark for evaluating causal discovery methods.

In this environment, the colors of nodes are controlled by the causal graph; therefore, finding

the true causal graph makes it much easier to achieve the goal that requires matching all target

colors. The agent can discover the graph by doing interventions by interacting with the environ-

ment. We consider four types of causal graphs (Collider, Chain, Jungle, Full) with 10 nodes in

this experiment.

The discovery performance is shown in Table 4.5 with five metrics that indicate the classifi-

cation error. We can see that GRADER outperforms the Score method in all 4 types of graphs.

In Figure 4.15, we show the graphs discovered in GRADER (averaged over 10 seeds) and the
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Figure 4.17: TV distance between goal and state distributions.

true causal graphs of Collider and Jungle settings.

Distance between Goal and State Distribution

In Figure 4.17, we empirically show the upper bound proved in (4.72), which describes the TV

distance between the goal distribution and the state distribution collected from the GRADER

policy. We used 10 trails and plotted the mean and standard derivation of the distance. We

observe that the distance becomes smaller as the policy improves in GRADER. This supports

our statement that the planning module helps to collect better data samples, which will be used

in the causal discovery module. We also plot the distance with a random policy, which is always

large, since the goal is not easy to achieve by random actions.

4.3 Break Spurious Correlation with Generative Models

Reinforcement learning (RL), aiming to learn a policy to maximize cumulative reward through

interactions, has been successfully applied to a wide range of tasks such as language genera-

tion (OpenAI, 2023), game play (Silver et al., 2016), autonomous driving (Bojarski et al., 2016),

155



etc. Although standard RL has achieved remarkable success in simulated environments, a grow-

ing trend in RL is to address another critical concern – robustness – with the hope that the learned

policy still performs well when the deployed (test) environment deviates from the nominal one

used for training (Ding et al., 2022a). Robustness is highly desirable, since the performance

of the learned policy could significantly deteriorate due to uncertainty and variations of the test

environment induced by random perturbation, rare events, or even malicious attacks (Mahmood

et al., 2018; Zhang et al., 2021).

Despite the various types of uncertainty that have been investigated in RL, this work focuses

on the uncertainty of the environment with semantic meanings resulting from some unobserved

underlying variables. This type of environment uncertainty, denoted as structured uncertainty,

is motivated by numerous applications in the real world but still receives little attention in se-

quential decision-making tasks (De Haan et al., 2019). To specify the phenomenon of structured

uncertainty, let us consider a concrete example (illustrated in Figure 4.18) in a driving scenario,

where a shift between training and test environments caused by an unobserved confounder can

potentially lead to a serious safety issue. Specifically, the observations brightness and traffic

density do not have cause and effect on each other, but are controlled by a confounder (i.e. sun

and human activity) that is usually unobserved 1 to the agent. During training, the agent could

memorize the spurious state correlation between brightness and traffic density, i.e., the traffic

is heavy during the day but light at night. However, such a correlation could be problematic

during testing when the value of the confounder deviates from the training one, e.g. traffic be-

comes heavy at night due to special events (human activity changes), as shown at the bottom of

Figure 4.18. Consequently, the policy dominated by the spurious correlation in training fails in

out-of-distribution samples (observations of heavy traffic at night) in the test scenarios.

The failure of the driving example in Figure 4.18 is attributed to the widespread and harm-

ful spurious correlation, namely, the learned policy is not robust to the structured uncertainty

of the test environment caused by the unobserved confounder. However, ensuring robustness

to structured uncertainty is challenging since the targeted uncertain region – the structured un-

certainty set of the environment – is carved by the unknown causal effect of the unobserved

1sometimes they are observed but ignored given so many variables to be considered in neural networks.
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Figure 4.18: A model trained only with heavy traffic in the daytime learns the spurious correla-

tion between brightness and traffic density and could fail to drive in light traffic in the daytime.

confounder and thus hard to characterize. In contrast, previous work on robustness in RL (Moos

et al., 2022) usually considers a homogeneous and structure-agnostic uncertainty set around the

state (Han et al., 2022; Zhang et al., 2021, 2020c), action (Tan et al., 2020; Tessler et al., 2019),

or the training environment (Iyengar, 2005; Shi and Chi, 2022; Yang et al., 2022) measured by

some heuristic functions (Moos et al., 2022; Shi and Chi, 2022; Zhang et al., 2020c) to account

for unstructured random noise or small perturbations. Consequently, these prior works could

not cope with the structured uncertainty since their uncertainty set is different from and cannot

tightly cover the desired structured uncertainty set, which could be heterogeneous and allow for

potentially large deviations between the training and test environments.

In this work, to address the structured uncertainty, we first propose a general RL formula-

tion called State-confounded Markov decision processes (SC-MDPs), which model the possible

causal effect of the unobserved confounder in an RL task from a causal perspective. SC-MDPs

better explain the reason for semantic shifts in the state space than traditional MDPs. Then,

we formulate the problem of seeking robustness to structured uncertainty as solving Robust

SC-MDPs (RSC-MDPs), which optimizes the worst performance when the distribution of the

unobserved confounder lies in some uncertainty set. The key contributions of this work are

summarized below.
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• We propose a new type of robustness concerning structured uncertainty to address spurious

correlation in RL and provide a formal mathematical formulation called RSC-MDPs, which

are well-motivated by ubiquitous real-world applications.

• We theoretically justify the advantage of the proposed RSC-MDP framework against struc-

tured uncertainty over the prior formulation in robust RL without semantic information.

• We implement an empirical algorithm to find the optimal policy of RSC-MDPs and show

that it outperforms the baselines on eight real-world tasks in manipulation and self-driving.

4.3.1 Preliminary and Limitations of Robust RL

In the following, we first introduce the preliminary formulation of standard RL and then discuss

a natural type of robustness that is widely considered in the RL literature and is most related to

this work – robust RL.

Standard Markov decision processes (MDPs). An episodic finite-horizon standard MDP is

represented by M =
{
S,A, T, r, P

}
, where S ⊆ Rn and A ⊆ RdA are the state and action

spaces, respectively, with n/dA being the dimension of state/action. Here, T is the length of the

horizon; P = {Pt}1≤t≤T , where Pt : S × A → ∆(S) denotes the probability transition kernel

at the time step t, for all 1 ≤ t ≤ T ; and r = {rt}1≤t≤T denotes the reward function, where

rt : S × A → [0, 1] represents the deterministic immediate reward function. A policy (action

selection rule) is indicated by π = {πt}1≤t≤T , that is, the policy at the time step t is πt : S →
∆(A) based on the current state st as πt(· | st). To represent the long-term cumulative reward,

the value function V π,P
t : S → R and Q-value function Qπ,P

t : S × A → R associated with

policy π at step t are defined as V π,P
t (s) = Eπ,P

[∑T
k=t rk(sk, ak) | sk = s

]
and Qπ,P

t (s, a) =

Eπ,P
[∑T

k=t rk(sk, ak) | st = s, at = a
]
, where the expectation is taken over the sample trajectory

{(st, at)}1≤t≤T generated following at ∼ πt(· | st) and st+1 ∼ Pt(· | st, at).
Robust Markov decision processes (RMDPs). As a robust variant of standard MDPs motivated

by distributionally robust optimization, RMDP is a natural formulation to promote robustness to

the uncertainty of the transition probability kernel (Iyengar, 2005; Shi and Chi, 2022), repre-

sented asMrob =
{
S,A, T, r,Uσ(P 0)

}
. Here, we reuse the definitions of S,A, T, r in standard

MDPs and denote Uσ(P 0) as an uncertainty set of probability transition kernels centered around
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a nominal transition kernel P 0 = {P 0
t }1≤t≤T measured by some ‘distance’ function ρwith radius

σ. In particular, the uncertainty set obeying the (s, a)-rectangularity (Wiesemann et al., 2013)

can be defined over all (s, a) state-action pairs at each time step t as

Uσ(P 0) := ⊗ Uσ(P 0
t,s,a), Uσ(P 0

t,s,a) :=
{
Pt,s,a ∈ ∆(S) : ρ

(
Pt,s,a, P

0
t,s,a

)
≤ σ

}
, (4.82)

where ⊗ denotes the Cartesian product. Here, Pt,s,a := Pt(· | s, a) ∈ ∆(S) and P 0
t,s,a :=

P 0
t (· | s, a) ∈ ∆(S) denote the transition kernel Pt or P 0

t at each state-action pair (s, a), respec-

tively. Consequently, the next state st+1 follows st+1 ∼ Pt(· | st, at) for any Pt ∈ Uσ(P 0
t,st,at),

namely, st+1 can be generated from any transition kernel belonging to the uncertainty set Uσ(P 0
t,st,at)

rather than a fixed one in standard MDPs. As a result, for any policy π, the corresponding robust

value function and robust Q function are defined as

V π,σ
t (s) := inf

P∈Uσ(P 0)
V π,P
t (s), Qπ,σ

t (s, a) := inf
P∈Uσ(P 0)

Qπ,P
t (s, a), (4.83)

which characterize the cumulative reward in the worst case when the transition kernel is within

the uncertainty set Uσ(P 0). Using samples generated from the nominal transition kernel P 0,

the goal of RMDPs is to find an optimal robust policy that maximizes V π,σ
1 when t = 1, i.e.,

performs optimally in the worst case when the transition kernel of the test environment lies in a

prescribed uncertainty set Uσ(P 0).

Lack of semantic information in RMDPs. In spite of the rich literature on robustness in RL,

prior works usually hedge against the uncertainty induced by unstructured random noise or small

perturbations, specified as a small and homogeneous uncertainty set around the nominal one.

For example, in RMDPs, people usually prescribe the uncertainty set of the transition kernel

using a simple heuristic function ρ with a relatively small σ. However, the unknown uncertainty

in the real world could have a complicated and semantic structure that cannot be well covered

by a homogeneous ball regardless of the choice of the uncertainty radius σ, leading to over-

conservative policy (when σ is large) or insufficient robustness (when σ is small). Together, we

obtain the natural motivation for this work: How to formulate such a structured uncertainty and

ensure robustness against it?
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4.3.2 Robust RL against Structured Uncertainty from Causal Perspective

To describe structured uncertainty, we choose to study MDPs from a causal perspective with a

basic concept called a structural causal model (SCM). Armed with the concept, we formulate

State-confounded MDPs – a broader set of MDPs in the face of the unobserved confounder in

the state space. Next, we provide the main formulation considered in this work, robust state-

confounded MDPs, which promote robustness to structured uncertainty.

Structural causal model. We denote a structural causal model (SCM) (Pearl, 2009) by a tuple

{X, Y, F, P x}, where X is the set of exogenous (unobserved) variables, Y is the set of endoge-

nous (observed) variables, and P x is the distribution of all the exogenous variables. Here, F is the

set of structural functions that capture the causal relations between X and Y such that for each

variable yi ∈ Y , fi ∈ F is defined as yi ← fi
(
PA(yi), xi

)
, where xi ⊆ X and PA(yi) ⊆ Y \ yi

denote the parents of node yi. We say that a pair of variables yi and yj are confounded by a

variable C (confounder) if they are both caused by C, that is, C ∈ PA(yi) and C ∈ PA(yj).

When two variables yi and yj do not have direct causality, they are still correlated if they are

confounded, in which case this correlation is called a spurious correlation.

State-confounded MDPs (SC-MDPs)

We now present state-confounded MDPs (SC-MDPs), whose probabilistic graph is illustrated in

Figure 4.19(a) with a comparison to standard MDPs in Figure 4.19(b). In addition to the com-

ponents of standard MDPs M =
{
S,A, T, r

}
, we introduce a set of unobserved confounders

Cs = {ct}1≤t≤T , where ct ∈ C denotes the confounder generated from some unknown but fixed

distribution P c
t at the time step t, that is, ct ∼ P c

t ∈ ∆(C).
To characterize the causal effect of the confounder Cs on the state dynamic, we resort to

an SCM, where Cs is the set of exogenous (unobserved) confounders, and endogenous vari-

ables include all dimensions of states {sit}1≤i≤n,1≤t≤T , and actions {at}1≤t≤T . Specifically, the

structural function F is considered as {P it}1≤i≤n,1≤t≤T – the transition from the current state st,

action at and the confounder ct to each dimension of the next state sit+1 for all time steps, i.e.

sit+1 ∼ P it(· | st, at, ct). In particular, the specified SCM does not confound the reward, that is,

rt(st, at) does not depend on the confounder ct.
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Figure 4.19: The probabilistic graphs of our formulation (SC-MDP) and related formulations.

s1t means the first dimension of st. st′ is a shorthand for st+1. In SC-MDP, the orange line

represents the backdoor path from state s1t′ to action at′ opened by the confounder ct, which

makes the learned policy π rely on the value of ct.

Armed with the above SCM, denoting P c := {P c
t }, we can introduce state-confounded MDPs

(SC-MDPs) represented byMsc =
{
S,A, T, r, C, {P it}, P c

}
(Figure 4.19(a)). A policy is in-

dicated as π = {πt}, where each πt results in an intervention (possibly stochastic) that sets

at ∼ πt(· | st) at the time step t regardless of the value of the confounder.

State-confounded value function and optimal policy. Given st, the causal effect of at on the

next state st+1 plays an important role in characterizing value function/Q-function. To ensure the

identifiability of the causal effect, the confounder ct are assumed to obey the backdoor criterion

(Pearl, 2009; Peters et al., 2017), leading to the following state-confounded value function (SC-

value function) and state-confounded Q-function (SC-Q function) (Wang et al., 2021b):

Ṽ π,P c

t (s) = Eπ,P c

[
T∑
k=t

rk(sk, ak) | st = s; ck ∼ P c
k , s

i
k+1 ∼ P ik(· | sk, ak, ck)

]
,

Q̃π,P c

t (s, a) = Eπ,P c

[
T∑
k=t

rk(sk, ak) | st = s, at = a; ck ∼ P c
k , s

i
k+1 ∼ P ik(· | sk, ak, ck)

]
.

(4.84)

Remark 1. Note that the proposed SC-MDPs serve as a general formulation for a broad family of

RL problems that include standard MDPs as a special case. Specifically, any standard MDPM ={
S,A, P, T, r

}
can be equivalently represented by at least one SC-MDP Msc =

{
S,A, T, r,

C, {P it}, P c
}

as long as Ect∼P c
t
[P it(· | st, at, ct)] =

[
P (· | st, at)

]
i

for all 1 ≤ i ≤ n, 1 ≤ t ≤ T .
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Robust state-confounded MDPs (RSC-MDPs)

In this work, we consider robust state-confounded MDPs (RSC-MDPs) – a variant of SC-MDPs

promoting robustness to the uncertainty of the unobserved confounder distribution P c, denoted

byMsc-rob =
{
S,A, T, r, C, {P it},Uσ(P c)

}
. Here, the perturbed distribution of the unobserved

confounder is assumed in an uncertainty set Uσ(P c) centered around the nominal distribution P c

with radius σ measured by some ‘distance’ function ρ : ∆(C)×∆(C)→ R+, i.e.,

Uσ(P c) := ⊗ Uσ(P c
t ), Uσ(P c

t ) := {P ∈ ∆(C) : ρ (P, P c
t ) ≤ σ} . (4.85)

Consequently, the corresponding robust SC-value function and robust SC-Q function are defined

as

Ṽ π,σ
t (s) := inf

P∈Uσ(P c)
Ṽ π,P
t (s), Q̃π,σ

t (s, a) := inf
P∈Uσ(P c)

Q̃π,P
t (s, a), (4.86)

representing the worst-case cumulative rewards when the confounder distribution lies in the un-

certainty set Uσ(P c).

Then a natural question is: Does there exist an optimal policy that maximizes the robust

SC-value function Ṽ π,σ
t for any RSC-MDP so that we can target learning? To answer this, we

introduce the following theorem, which ensures the existence of an optimal policy for all RSC-

MDPs. The proof can be found in 4.3.3.

Theorem 3 (Existence of an optimal policy). Let Π be the set of all non-stationary and stochastic

policies. Consider any RSC-MDP, there exists at least one optimal policy πsc,⋆ = {πsc,⋆
t }1≤t≤T

such that for all (s, a) ∈ S ×A and 1 ≤ t ≤ T , one has

Ṽ πsc,⋆,σ
t (s) = Ṽ ⋆,σ

t (s) := sup
π∈Π

Ṽ π,σ
t (s) and Q̃πsc,⋆,σ

t (s, a) = Q̃⋆,σ
t (s, a) := sup

π∈Π
Q̃π,σ
t (s, a).

In addition, RSC-MDPs also possess benign properties similar to RMDPs such that for any

policy π and the robust optimal policy πsc,⋆, the corresponding robust SC Bellman consistency

equation and robust SC Bellman optimality equation are also satisfied, as specified in 4.3.3.

Goal. Based on all the definitions and analysis above, this work aims to find an optimal policy
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Figure 4.20: (a) RMDPs add homogeneous noise to states, while (b) RSC-MDPs perturb the

confounder to influence states, resulting in a subset of the valid space.

for RSC-MDPs that maximizes the robust SC-value function in (4.86), yielding optimal perfor-

mance in the worst case where the unobserved confounder distribution falls into an uncertainty

set Uσ(P c).

Advantages of RSC-MDPs over traditional RMDPs

The most relevant robust RL formulation for ours is RMDPs, which has been introduced in Sec-

tion 4.3.1. Here, we provide a thorough comparison between RMDPs and our RSC-MDPs with

theoretical justifications, and leave the comparisons and connections to other related formula-

tions in Figure 4.19.

To begin, at each time step t, RMDPs explicitly introduce uncertainty into the transition

probability kernels, while our RSC-MDPs add uncertainty to the transition kernels in a latent (and

hence more structured) manner by perturbing the unobserved confounder that partly determines

the transition kernels. As an example, imagine the true uncertainty set encountered in the real

world illustrated by the blue region in Figure 4.20, which could have a complicated structure.

Since the uncertainty set in RMDPs is homogeneous (illustrated by the green circles), one often

faces the dilemma of being either too conservative (when σ is large) or too reckless (when σ

is small). In contrast, the proposed RSC-MDPs – shown in Figure 4.20(b) – take advantage of

the structured uncertainty set (illustrated by the orange region) enabled by the underlying SCM,
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which can potentially lead to much better estimation of the true uncertainty set. Specifically,

the varying unobserved confounder induces diverse perturbation to different portions of the state

through the structural causal function, enabling heterogeneous and structural uncertainty sets

over the state space.

Theoretical guarantees of RSC-MDPs: advantages of structured uncertainty. To theoret-

ically understand the advantages of the proposed robust formulation of RSC-MDPs compared

to previous work, especially RMDPs, the following theorem verifies that RSC-MDPs enable

additional robustness against semantic attack in addition to small model perturbation or noise

considered in RMDPs. The proof is postponed to Appendix 4.3.3.

Theorem 4. Consider any T ≥ 2. Consider some standard MDPs M =
{
S,A, P 0, T, r

}
,

equivalently represented as an SC-MDP Msc =
{
S,A, T, r, C, {P it}, P c} with C := {0, 1},

and total variation as the ‘distance’ function ρ to measure the uncertainty set (the admissible

uncertainty level obeys σ ∈ [0, 1]). For the corresponding RMDP Mrob with uncertainty set

Uσ1(P 0), and the proposed RSC-MDP Msc-rob =
{
S,A, T, r, C, {P it},Uσ2(P c)

}
, the optimal

robust policy π⋆,σ1RMDP associated withMrob and π⋆,σ2RSC associated withMsc-rob obey: given σ2 ∈(
1
2
, 1
]
, there exist RSC-MDPs with some initial state distribution ϕ such that

Ṽ
π
⋆,σ2
RSC ,σ2

1 (ϕ)− Ṽ π
⋆,σ1
RMDP,σ2

1 (ϕ) ≥ T

8
, ∀σ1 ∈ [0, 1]. (4.87)

In words, Theorem 4 reveals a fact about the proposed RSC-MDPs: RSC-MDPs could suc-

ceed in intense semantic attacks while RMDPs fail. As shown by (4.87), when fierce semantic

shifts appear between training and test scenarios – perturbing the unobserved confounder in a

large uncertainty set Uσ2(P c), solving RSC-MDPs with π⋆,σ2RSC succeeds in testing while π⋆,σ1RMDP

trained by solving RMDPs can fail catastrophically. The proof is achieved by constructing hard

instances of RSC-MDPs that RMDPs could not cope with due to inherent limitations. Further-

more, this advantage of RSC-MDPs is consistent with and verified by the empirical performance

evaluation in Section 4.3.5 R1.
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4.3.3 Theoretical Analyses RSC-MDPs

Proof of Theorem 3

In this section, we verify the existence of an optimal policy of the proposed RSC-MDPs, in-

volving additional components — confounder Cs and the infimum optimization problems with

comparisons with standard MDPs (Agarwal et al., 2019).

To begin with, we recall that the goal is to find a policy π̃ = {π̃t}1≤t≤T ∈ Π such that for all

(s, a) ∈ S ×A:

Ṽ π̃,σ
t (s) = Ṽ ⋆,σ

t (s) := sup
π∈Π

Ṽ π,σ
t (s), (4.88)

Q̃π̃,σ
t (s, a) = Q̃⋆,σ

t (s, a) := sup
π∈Π

Q̃π,σ
t (s, a), (4.89)

which we called an optimal policy. To do this, we start from the first claim in equation 4.89.

Step 1: Introducing additional notation. Before proceeding, we let {St, At, Rt, Ct} denote the

random variables — state, action, reward, and confounder, at time step t for all 1 ≤ t ≤ T . Then

invoking the Markov properties, we know that, conditioned on the current state st, the future

state, action, and reward are all independent of the previous s1, a1, r1, c1, · · · , st−1, at−1, rt−1, ct−1.
In addition, we represent Pt ∈ ∆(C) as some distribution of confounder at time step t, for all

1 ≤ t ≤ T . For convenience, we introduce the following notation that is defined in the time step

t ≤ k ≤ T :

∀1 ≤ t ≤ T : P+t := ⊗t≤k≤TPk, (4.90)

Uσ(P c
+t) := ⊗t≤k≤TUσ(P c

k ), (4.91)

which represent some collections of variables from time step t to the end of the episode. Further-

more, recall that the transition kernel from time step t to t+1 is denoted as sit+1 ∼ P it(· | st, at, ct)
for i ∈ 1, 2 · · · , n. With slight abuse of notation, we denote st+1 ∼ Pt(· | st, at, ct) and abbreviate

Est+1∼Pt(· | st,at,ct)[·] as Est+1 [·] whenever it is clear.

Step 2: Establishing recursive relationship. Recall that the nominal distribution of the con-
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founder is ct ∈ P c
t at the time step t. We choose π̃ = {π̃t} which obeys: for all 1 ≤ t ≤ T ,

π̃t(s) := argmax
πt∈∆(A)

{
Eπt [rt(s, at)] + inf

Pt∈Uσ(P c
t )
Eπt

[
Ect∼Pt

[
Est+1

[
Ṽ ⋆,σ
t+1(st+1)

]] ]}
. (4.92)

Armed with these definitions and notations, for any (t, s) ∈ {1, 2, · · · , T} × S , one has

Ṽ ⋆,σ
t (s)

(i)
= sup

π∈Π
inf

P∈Uσ(P c)
Ṽ π,P
t (s)

(ii)
= sup

π∈Π
inf

P+t∈Uσ(P c
+t)

Eπ,P+t

[
T∑
k=t

rk(sk, ak)

]
(iii)
= sup

π∈Π
inf

P+t∈Uσ(P c
+t)

Eπt

[
rt(s, at)

+ Ect∼Pt

[
Est+1

[
T∑

k=t+1

rk(sk, ak) |π, P+(t+1), (St, At, Rt, Ct, St+1) = (s, at, rt, ct, st+1)

]]]

= sup
π∈Π

Eπt [rt(s, at)] + inf
P+t∈Uσ(P c

+t)
Eπt

[
Ect∼Pt

[

Est+1

[
T∑

k=t+1

rk(sk, ak) |π, P+(t+1), (St, At, Rt, Ct, St+1) = (s, at, rt, ct, st+1)

]]]
,

where (i) holds by the definitions in equation 4.86, (ii) is due to equation 4.84 and that Ṽ π,P
t (s)

only depends on P+t by the Markov property, (iii) follows from expressing the term of interest

by moving one step ahead and Eπt is taken with respect to at ∼ πt(· |St = s).
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To continue, we observe that the Ṽ ⋆,σ
t (s) can be further controlled as follows:

Ṽ ⋆,σ
t (s)

= sup
π∈Π

Eπt [rt(s, at)] + inf
P+t∈Uσ(P c

+t)
Eπt

[
Ect∼Pt

[

Est+1

[
T∑

k=t+1

rk(sk, ak) |π, P+(t+1), (St, At, Rt, Ct, St+1) = (s, at, rt, ct, st+1)

]]]
(i)
= sup

π∈Π
Eπt [rt(s, at)] + inf

Pt∈Uσ(P c
t )
Eπt

[
Ect∼Pt

[
Est+1

[

inf
P+(t+1)∈Uσ

(
P c
+(t+1)

)
T∑

k=t+1

rk(sk, ak) |π, P+(t+1), (St, At, Rt, Ct, St+1) = (s, at, rt, ct, st+1)

]]]

≤ sup
π∈Π

Eπt [rt(s, at)] + inf
Pt∈Uσ(P c

t )
Eπt

[
Ect∼PtEst+1

[
sup
π′∈Π

inf
P+(t+1)∈Uσ(P c

+(t+1)
)

T∑
k=t+1

rk(sk, ak) |π′, P+(t+1), (St, At, Rt, Ct, St+1) = (s, at, rt, ct, st+1)

]]
(ii)
= sup

π∈Π
Eπt [rt(s, at)]

+ inf
Pt∈Uσ(P c

t )
Eπt

[
Ect∼Pt

[
Est+1

[
sup
π′∈Π

inf
P+(t+1)∈Uσ(P c

+(t+1)
)
Eπ′,P+(t+1)

[
T∑

k=t+1

rk(sk, ak)

]]]]

= sup
π∈Π

{
Eπt [rt(s, at)] + inf

Pt∈Uσ(P c
t )
Eπt

[
Ect∼Pt

[
Est+1

[
Ṽ ⋆,σ
t+1(st+1)

]] ]}

= sup
πt∈∆(A)

{
Eπt [rt(s, at)] + inf

Pt∈Uσ(P c
t )
Eπt

[
Ect∼Pt

[
Est+1

[
Ṽ ⋆,σ
t+1(st+1)

]] ]}
= inf

Pt∈Uσ(P c
t )
E
[
rt(s, at) + Ect∼PtEst+1

[[
Ṽ ⋆,σ
t+1(st+1)

]
| at = π̃t(s)

]]
, (4.93)

where (i) holds by the operator inf
P+(t+1)∈Uσ

(
P c
+(t+1)

) is independent from πt conditioned on a

fixed distribution of st+1, (ii) arises from the Markov property such that the rewards {rk(sk, ak)}t+1≤k≤T

conditioned on (St, At, Rt, Ct, St+1) or St+1 are the same, and the last equality follows from the

definition of π̃ in equation 4.92.

Step 3: Completing the proof by applying recursion.
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Applying equation 4.93 recursively for t+ 1, · · ·T , we arrive at

Ṽ ⋆,σ
t (s) ≤ inf

Pt∈Uσ(P c
t )
E
[
rt(s, at) + Ect∼PtEst+1

[[
Ṽ ⋆,σ
t+1(st+1)

]
| at = π̃t(s)

]]
≤ inf

Pt∈Uσ(P c
t )

inf
Pt+1∈Uσ(P c

t+1)
E

[
rt(s, at) + Ect∼Pt

[
Est+1

[
rt+1(st+1, at+1) + Ect+1∼Pt+1

[
Est+2

[
Ṽ ⋆,σ
t+2(st+2)

]] ]]∣∣∣(at, at+1) = (π̃t(s), π̃t+1(st+1))

]

≤ · · · ≤ inf
P+t∈Uσ(P c

+t)
Eπ,P+t

[
T∑
k=t

rk(sk, ak)

]
= Ṽ π̃,σ

t (s). (4.94)

Observing from equation 4.94 that

∀s ∈ S : Ṽ ⋆,σ
t (s) ≤ Ṽ π̃,σ

t (s) ≤ sup
π∈Π

Ṽ π,σ
t (s) = Ṽ ⋆,σ

t (s), (4.95)

which directly verifies the first assertion in equation 4.89 Ṽ π̃,σ
t (s) = Ṽ ⋆,σ

t (s) for all s ∈ S. The

second assertion in equation 4.89 can be achieved analogously. Until now, we verify that there

exists at least a policy π̃ that obeys equation 4.89, which we refer to as an optimal policy since

its value is equal to or larger than any other non-stationary and stochastic policies over all states

s ∈ S.

Proof of Theorem 4

We establish the proof by separating it into several key steps.

Step 1: Constructing a hard instanceM of standard MDP. In this section, we consider the

following standard MDP instanceM =
{
S,A, P 0, T, r

}
where S = {[0, 0], [0, 1], [1, 0], [1, 1]}

is the state space consisting of four elements in dimension n = 2, and A = {0, 1} is the action

space with only two options. The transition kernel P 0 = {P 0
t }1≤t≤T at different time steps

1 ≤ t ≤ T is defined as

P 0
1 (s
′ | s, a) =

 1(s′ = [0, 0])1(a = 0) + 1(s′ = [0, 1])1(a = 1) if s = [0, 0]

1(s′ = s) otherwise
, (4.96)
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Figure 4.21: The illustration of the transition kernels of the standard MDPM and the proposed

SC-MDPMsc at the first time step t = 1, i.e., P 0
t and P1 respectively.

which is illustrated in Figure 4.21(a), and

P 0
t (s
′ | s, a) = 1(s′ = s), ∀(t, s, a) ∈ {2, 3, · · · , T} × S ×A. (4.97)

Note that this transition kernel P 0 ensures that the next state transitioned from the state [0, 0] is

[0, 0] or [0, 1]. The reward function is specified as follows: for all time steps 1 ≤ t ≤ T ,

rt(s, a) =

 1, if s = [0, 0] or s = [1, 1]

0, otherwise
, (4.98)

Step 2: The equivalence between M and one SC-MDP. Next, we shall show that the con-

structed standard MDPM can be equivalently represented by one SC-MDPMsc =
{
S,A, T, r,

C, {P it}, P c}with C := {0, 1}. The equivalence is defined as the sequential observations {st, at, rt}1≤t≤T
induced by any policy and any initial state distribution in two Markov processes are identical.

To specify, S,A, T, r are kept the same asM. Here, {P it} shall be specified in a while, which

determines the transition to each dimension of the next state conditioned on the current state,

action, and confounder distribution for all time steps, that is, sit+1 ∼ Ect∼P c
t
[P it(· | st, at, ct)]

for any i-th dimension of the state (i ∈ {1, 2}) and for all time steps 1 ≤ t ≤ T . For conve-

nience, we denote Pt := [P1
t ,P2

t ] ∈ ∆(S) as the transition kernel towards the next state, that is,

st+1 ∼ Ect∼P c
t
[Pt(· | st, at, ct)].
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Then we simply set the nominal distribution of the confounder as follows:

P c
t (ct) = 1(ct = 0), ∀1 ≤ t ≤ T, ct ∈ C. (4.99)

In addition, before introducing the transition kernel {P it} of the SC-MDPMsc, we introduce an

auxiliary transition kernel P sc = {P sc
t } as follows:

P sc
1 (s′ | s, a) =

 1(s′ = [1, 0])1(a = 0) + 1(s′ = [1, 1])1(a = 1) if (s, a) = ([0, 0], 0)

1(s′ = s) otherwise
,

(4.100)

and

P sc
t (s′ | s, a) = 1(s′ = s), ∀(t, s, a) ∈ {2, 3, · · · , T} × S ×A. (4.101)

It can be seen that P sc is similar to P 0, except for the transition in the state [0, 0].

Armed with this transition kernel P sc, the {P it} of the SC-MDPMsc is set to obey

P1(s
′ | s, a, c1) =

 (1− c1)P 0
1 (s
′ | s, a) + c1P

sc
1 (s′ | s, a) if s = [0, 0]

1(s′ = s) otherwise
, (4.102)

which is illustrated in Figure 4.21(b), and

Pt(s′ | s, a, ct) = 1(s′ = s), ∀(t, s, a, ct) ∈ {2, 3, · · · , T} × S ×A× C. (4.103)

With them in mind, we are ready to verify that the marginalized transition from the current

state and action to the next state in the SC-MDPMsc is identical to the one in MDPM: for all

(t, st, at, st+1) ∈ {1, 2, · · · , T} × S ×A× S:

P(st+1 | st, at) = Ect∼P c
t
[Pt(st+1 | st, at, ct)] = Pt(st+1 | st, at, 0) = P 0(st+1 | st, at), (4.104)

where the second equality holds by the definition of P c in equation 4.99, and the last equality
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holds by the definitions of P (see equation 4.102 and equation 4.103).

In summary, we verified that the standard MDPM =
{
S,A, P 0, T, r

}
is equal to the SC-

MDP specified aboveMsc.

Step 3: Defining corresponding RMDP and RSC-MDP. Equipped with the equivalent standard

MDPM and SC-MDPMsc, we consider the robust variants of them respectively — a RMDP

Mrob =
{
S,A,Uσ1(P 0), T, r

}
with some uncertainty level σ1, and the proposed RSC-MDP

Msc-rob =
{
S,A, T, r, C, {P it},Uσ2(P c)

}
with some uncertainty level σ2.

In this section, without loss of generality, we consider total variation as the ‘distance’ function

ρ for the uncertainty sets of both RMDPMrob and RSC-MDPMsc-rob, i.e., for any probability

vectors P ′, P ∈ ∆(C) (or P ′, P ∈ ∆(S)), ρ (P ′, P ) := 1
2
∥P ′ − P∥1. Consequently, for any

uncertainty level σ ∈ [0, 1], the uncertainty set Uσ1(P 0) of the RMDP (see equation 4.82) and

Uσ2(P c) of the RSC-MDPMsc-rob (see equation 4.85) are defined as follow, respectively:

Uσ(P 0) := ⊗ Uσ(P 0
t,s,a), Uσ(P 0

t,s,a) :=

{
Pt,s,a ∈ ∆(S) : 1

2

∥∥Pt,s,a − P 0
t,s,a

∥∥
1
≤ σ

}
,

Uσ(P c) := ⊗ Uσ(P c
t ), Uσ(P c

t ) :=

{
P ∈ ∆(C) : 1

2
∥P − P c

t ∥1 ≤ σ

}
. (4.105)

Step 4: Comparing between the performance of the optimal policy of RMDPMrob (π⋆,σ1RMDP )

and that of RSC-MDPMsc-rob (π⋆,σ2RSC). To continue, we specify the robust optimal policy π⋆,σ1RMDP

associated withMrob and π⋆,σ2RSC associated withMsc-rob and then compare their performance on

RSC-MDP with some initial state distribution.

To begin, we introduce the following lemma about the robust optimal policy π⋆,σ1RMDP associ-

ated with the RMDPMrob.

Lemma 7. For any σ1 ∈ (0, 1], the robust optimal policy ofMrob obeys

∀s ∈ S :
[
π⋆,σ1RMDP

]
1
(0 | s) = 1. (4.106a)

In addition, we characterize the robust SC-value functions of the RSC-MDPMsc-rob associ-

ated with any policy, combined with the optimal policy and its optimal robust SC-value functions,

shown in the following lemma.
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Lemma 8. Consider any σ2 ∈ (1
2
, 1] and the RSC-MDPMsc-rob =

{
S,A, T, r, C, {P it},Uσ2(P c)

}
.

For any policy π, the corresponding robust SC-value functions satisfy

Ṽ π,σ2
1 ([0, 0]) = 1 + (T − 1) inf

P∈Uσ(P c
1 )
Ec1∼P

[
π1(0 | [0, 0])(1− c1) + π1(1 | [0, 0])c1

]
. (4.107a)

In addition, the optimal robust SC-value function and the robust optimal policy π⋆,σ2RSC of the

RMDPMsc-rob obeys:

Ṽ
π
⋆,σ2
RSC ,σ2

1 ([0, 0]) = Ṽ ⋆,σ2
1 ([0, 0]) = 1 +

T − 1

2
. (4.108)

Armed with above lemmas, applying Lemma 8 with policy π = π⋆,σ1RMDP obeying
[
π⋆,σ1RMDP

]
1
(0 | s) =

1 in Lemma 7, one has

Ṽ
π
⋆,σ1
RMDP,σ2

1 ([0, 0]) = 1 + (T − 1) inf
P∈Uσ(P c

1 )
Ec1∼P

[
1− c1

]

≤ 1 + (T − 1)

[
1

4
· 1 + 3

4
· 0
]
= 1 +

T − 1

4
, (4.109)

where the inequality holds by the fact that the probability distribution P obeying P1(0) =
1
4

and

P1(1) =
3
4

is inside the uncertainty set Uσ2(P c
1 ) (recall that σ2 ∈ (1

2
, 1] and P c

1 (0) = 1).

Finally, combining equation 4.109 and equation 4.108 together, we complete the proof by

showing that with the initial state distribution ϕ defined as ϕ([0, 0]) = 1, we arrive at

Ṽ
π
⋆,σ2
RSC ,σ2

1 (ϕ)− Ṽ π
⋆,σ1
RMDP,σ2

1 ([0, 0]) = Ṽ ⋆,σ2
1 (ϕ)− Ṽ π

⋆,σ1
RMDP,σ2

1 ([0, 0]) ≥ T − 1

4
≥ T

8
, (4.110)

where the last inequality holds by T ≥ 2.

Proof of auxiliary results

Proof of Lemma 7

Step 1: specifying the minimum of the robust value functions over states. For any uncertainty

set σ1 ∈ (0, 1], we first characterize the robust value function of any policy π over different states.
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To start, we denote the minimum of the robust value function over states at each time step t as

below:

V π,σ1
min,t := min

s∈S
V π,σ1
t (s) ≥ 0, (4.111)

where the last inequality holds that the reward function defined in equation 4.98 is always non-

negative. Obviously, there exists at least one state sπmin,t that satisfies V π,σ1
t (sπmin,t) = V π,σ1

min,t.

With this in mind, we shall verify that for any policy π,

∀1 ≤ t ≤ T : V π,σ1
t ([0, 1]) = V π,σ1

t ([1, 0]) = 0. (4.112)

To achieve this, we use a recursive argument. First, the base case can be verified since when

t + 1 = T + 1, the value functions are all zeros in the T + 1 step, that is, V π,σ1
T+1 (s) = 0 for all

s ∈ S. Then, the goal is to verify the following fact

V π,σ1
t ([0, 1]) = V π,σ1

t ([1, 0]) = 0, (4.113)

with the assumption that V π,σ1
t+1 (s) = 0 for any state s = {[0, 1], [1, 0]}. It is easily observed that

for any policy π, the robust value function when state s = {[0, 1], [1, 0]} at any time step t obeys

0 ≤ V π,σ1
t (s) = Ea∼πt(· | s)

[
rt(s, a) + inf

P∈Uσ1 (P 0
t,s,a)

PV π,σ1
t+1

]
(i)
= 0 + (1− σ1)V π,σ1

t+1 (s) + σ1V
π,σ1
min,t+1

(ii)
= 0 + σ1V

π,σ1
min,t+1

≤ 0 + σ1V
π,σ1
t+1 (s) = 0 (4.114)

where (i) holds by rt(s, a) = 0 for all s = {[0, 1], [1, 0]}, the fact P 0
t (s | s, a) = 1 for s ∈

S (see equation 4.96 and equation 4.97), and the definition of the uncertainty set Uσ1(P 0) in

equation 4.105. Here, (ii) follows from the recursive assumption V π,σ1
t+1 (s) = 0 for any state

s = {[0, 1], [1, 0]}, and the last equality holds by V π,σ1
min,t+1 ≤ V π,σ1

t+1 ([0, 1]) (see equation 4.111).

Until now, we have completed the proof for equation 4.113 and then verified equation 4.112.
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Note that equation 4.112 direcly leads to

∀1 ≤ t ≤ T : V π,σ1
min,t = 0. (4.115)

Step 2: Considering the robust value function at state [0, 0]. Armed with the above facts, we

are now ready to derive the robust value function for state [0, 0].

When 2 ≤ t ≤ T , one has

V π,σ1
t ([0, 0]) = Ea∼πt(· | [0,0])

[
rt([0, 0], a) + inf

P∈Uσ1 (Pt,[0,0],a)
PV π,σ1

t+1

]
(i)
= 1 +

[
(1− σ1)V π,σ1

t+1 ([0, 0]) + σ1V
π,σ1
min,t+1

]
= 1 + (1− σ1)V π,σ1

t+1 ([0, 0]), (4.116)

where (i) holds by rt([0, 0], a) = 1 for all a ∈ {0, 1} and the definition of P 0 (see equation 4.97),

and the last equality arises from equation 4.115 .

Applying equation 4.116 recursively for t, t+ 1, · · · , T yields that

V π,σ1
t ([0, 0]) =

T∑
k=t

(1− σ1)k−t ≥ 1. (4.117)

When t = 1, the robust value function obeys:

V π,σ1
1 ([0, 0]) = Ea∼π1(· | [0,0])

[
r1([0, 0], a) + inf

P∈Uσ1 (P1,[0,0],a)
PV π,σ1

2

]
(i)
= 1 + π1(0 | [0, 0]) inf

P∈Uσ1 (P1,[0,0],0)
PV π,σ1

2 + π1(1 | [0, 0]) inf
P∈Uσ1 (P1,[0,0],1)

PV π,σ1
2

(ii)
= 1 + π1(0 | [0, 0])

[
(1− σ1)V π,σ1

2 ([0, 0]) + σ1V
π,σ1
min,2

]
+ π1(1 | [0, 0])

[
(1− σ1)V π,σ1

2 ([0, 1]) + σ1V
π,σ1
min,2

]
= 1 + π1(0 | [0, 0])(1− σ1)V π,σ1

2 ([0, 0]), (4.118)

where (i) holds by r1([0, 0], a) = 1 for all a ∈ {0, 1}, (ii) follows from the definition of P 0 (see

equation 4.96), and the last equality arises from equation 4.112 and equation 4.115.
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Step 3: the optimal policy π⋆,σ1RMDP. Observing that V π,σ1
1 ([0, 0]) is increasing monotically as

π1(0 | [0, 0]) is larger, we directly have that π⋆,σ1RMDP(0 | [0, 0]) = 1.

Considering that the action does not influence the state transition for t = 2, 3, · · · , T and all

other states s ̸= [0, 0], without loss of generality, we choose the robust optimal policy as

∀s ∈ S :
[
π⋆,σ1RMDP

]
1
(0 | s) = 1. (4.119)

Proof of Lemma 8

To begin with, for any uncertainty level σ2 ∈ (1
2
, 1] and any policy π = {πt}, we consider the

robust SC-value function Ṽ π,σ2
t of the RSC-MDPMsc-rob.

Step 1: deriving Ṽ π,σ2
t for 2 ≤ t ≤ T . Towards this, for any 2 ≤ t ≤ T and s ∈ S, one has

Ṽ π,σ2
t (s) = Ea∼πt(s)

[
Q̃π,σ2
t (s, a)

]
(i)
= Ea∼πt(s)

[
rt(s, a) + inf

P∈Uσ(P c
t )
Ect∼P

[
Pt,s,a,ctṼ π,σ2

t+1

]]
(ii)
= rt(s, a) + inf

P∈Uσ(P c
t )
Ect∼P

[
Pt,s,a,ctṼ π,σ2

t+1

]
= rt(s, a) + Ṽ π,σ

t+1 (s), (4.120)

where (i) follows from the state-confounded Bellman consistency equation in equation 4.129, (ii)

holds by that the reward function rt and Pt are all independent from the action (see equation 4.98

and equation 4.103), and the last inequality holds by Pt(s′ | s, a, ct) = 1(s′ = s) is independent

from ct (see equation 4.103).

Applying the above fact recursively for t, t+ 1, · · · , T leads to that for any s ∈ S,

Ṽ π,σ2
t (s) = rt(s, at) + Ṽ π,σ

t+1 (s) = rt(s, a) + rt+1(s, at+1) + Ṽ π,σ
t+2 (s)

= · · · = rt(s, at) +
T∑

k=t+1

rk(sk, ak), (4.121)
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which directly yields (see reward r in equation 4.98)

Ṽ π,σ2
2 ([0, 0]) = Ṽ π,σ2

2 ([1, 1]) = T − 1 and Ṽ π,σ2
2 ([0, 1]) = Ṽ π,σ2

2 ([1, 0]) = 0. (4.122)

Step 2: characterizing Ṽ π,σ2
1 ([0, 0]) for any policy π. In this section, we consider the value of

Ṽ π,σ2
1 on the state [0, 0]. To proceed, one has

Ṽ π,σ2
1 ([0, 0]) = Ea∼π1([0,0])

[
Q̃π,σ2

1 ([0, 0], a)
]

(i)
= Ea∼π1([0,0])

[
r1([0, 0], a) + inf

P∈Uσ(P c
1 )
Ec1∼P

[
P1,[0,0],a,c1Ṽ

π,σ2
2

]]
(ii)
= 1 + inf

P∈Uσ(P c
1 )
Ec1∼P

[(
π1(0 | [0, 0])P1,[0,0],0,c1 + πt(1 | [0, 0])P1,[0,0],1,c1

)
Ṽ π,σ
2

]
(iii)
= 1 + inf

P∈Uσ(P c
1 )
Ec1∼P

[
π1(0 | [0, 0])

(
(1− c1)P 0

1,[0,0],0 + c1P
sc
1,[0,0],0

)
Ṽ π,σ
2

+ π1(1 | [0, 0])
(
(1− c1)P 0

1,[0,0],1 + c1P
sc
1,[0,0],1

)
Ṽ π,σ
2

]
(iv)
= 1 + inf

P∈Uσ(P c
1 )
Ec1∼P

[
π1(0 | [0, 0])

(
(1− c1)Ṽ π,σ

2 ([0, 0]) + c1Ṽ
π,σ
2 ([1, 0])

)
+ π1(1 | [0, 0])

(
(1− c1)Ṽ π,σ

2 ([0, 1]) + c1Ṽ
π,σ
2 ([1, 1])

)]

= 1 + (T − 1) inf
P∈Uσ(P c

1 )
Ec1∼P

[
π1(0 | [0, 0])(1− c1) + π1(1 | [0, 0])c1

]

= 1 + (T − 1)π1(0 | [0, 0]) + (T − 1) inf
P∈Uσ(P c

1 )
Ec1∼P

[
c1
(
1− 2π1(0 | [0, 0])

)]
, (4.123)

where (i) holds by robust state-confounded Bellman consistency equation in equation 4.129, (ii)

follows from r1([0, 0], a) = 1 for all a ∈ {0, 1} which is independent from ct. (iii) arises from

the definition of P in equation 4.102, (iv) can be verified by plugging in the definitions from

equation 4.96 and equation 4.100, and the penultimate equality holds by equation 4.122.

Step 3: characterizing the optimal robust SC-value functions. Before proceeding, we recall

the fact that Uσ(P c
1 ) =

{
P ∈ ∆(C) : 1

2
∥P − P c

1∥1 ≤ σ2
}

.

Observing from equation 4.123 that for any fixed π1(0 | [0, 0]), c1
(
1 − 2π1(0 | [0, 0])

)
is
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monotonously increasing with c1 when 1− 2π1(0 | [0, 0]) ≥ 0 and decreasing with c1 otherwise,

it is easily verified that the maximum of the following function

f
(
π1(0 | [0, 0])

)
:= (T − 1) inf

P∈Uσ(P c
1 )
Ec1∼P

[
c1
(
1− 2π1(0 | [0, 0])

)]
(4.124)

obeys

max f
(
π1(0 | [0, 0])

)
=

0 if π1(0 | [0, 0]) ≥ 1
2

(T − 1)σ2
(
1− 2π1(0 | [0, 0])

)
otherwise

. (4.125)

Then, note that the value of Ṽ π,σ2
1 ([0, 0]) only depends on π1(· | [0, 0]) which can be represent

by π1(0 | [0, 0]). Plugging in equation 4.125 into equation 4.123 arrives at when π1(0 | [0, 0]) ≥ 1
2
,

max
π1(0 | [0,0])≥ 1

2

Ṽ π,σ2
1 ([0, 0])

= max
π1(0 | [0,0])≥ 1

2

1 + (T − 1)π1(0 | [0, 0]) + (T − 1)σ2
(
1− 2π1(0 | [0, 0])

)
= 1 + (T − 1)σ2 + (T − 1) max

π1(0 | [0,0])≥ 1
2

(1− 2σ2)π1(0 | [0, 0])

= 1 + (T − 1)σ2 +
(T − 1)(1− 2σ2)

2
= 1 +

T − 1

2
, (4.126)

where the penultimate equality holds by σ2 > 1
2

and letting π1(0 | [0, 0]) = 1
2
. Similarly, when

π1(0 | [0, 0]) < 1
2
,

max
π1(0 | [0,0])< 1

2

Ṽ π,σ2
1 ([0, 0]) = max

π1(0 | [0,0])< 1
2

1 + (T − 1)π1(0 | [0, 0]) < 1 +
T − 1

2
. (4.127)

Consequently, combining equation 4.126 and equation 4.127, we conclude that

Ṽ
π
⋆,σ2
RSC ,σ2

1 ([0, 0]) = Ṽ ⋆,σ2
1 ([0, 0]) = max

π
Ṽ π,σ2
1 ([0, 0]) = 1 +

T − 1

2
. (4.128)

Auxiliary results of RSC-MDPs

It is easily verified that for any RSC-MDP Msc-rob =
{
S,A, T, r, C, {P it},Uσ2(P c)

}
, any
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policy π and optimal policy π⋆ satisfy the corresponding robust state-confounded Bellman con-

sistency equation and Bellman optimality equation shown below, respectively:

Q̃π,σ
t (s, a) = rt(s, a) + inf

P∈Uσ(P c
t )
Ect∼P

[
Pt,s,a,ctṼ π,σ

t+1

]
,

Q̃⋆,σ
t (s, a) = rt(s, a) + inf

P∈Uσ(P c
t )
Ect∼P

[
Pt,s,a,ctṼ ⋆,σ

t+1

]
, (4.129)

where Pt,s,a,ct ∈ R1×S such that Pt,s,a,ct(s′) := Pt(s′ | s, a, ct) for s′ ∈ S, and Ṽ ⋆,σ
t (s) =

supπt∈∆(A)

{
Eπt [rt(s, at)] + infPt∈Uσ(P c

t )
Eπt

[
Ect∼Pt

[
Pt,s,a,ctṼ ⋆,σ

t+1(st+1)
] ]}

.

4.3.4 An Empirical Algorithm to Solve RSC-MDPs: RSC-SAC

Algorithm 7: RSC-SAC Training
Input: policy π, data buffer D, transition model Pθ, ratio of modified data β

1 for t ∈ [1, T ] do

2 Sample action at ∼ π(·|st)
3 (st+1, rt)← Env(st, at)

4 Add buffer D = D ∪ {st, at, st+1, rt}
5 for sample batch B ∈ D do

6 Randomly select β% data in B
7 Modify st in selected data with (4.130)

8 (ŝt+1, r̂t) ∼ Pθ(st, at,Gϕ)
9 Replace data with (st, at, ŝt+1, r̂t)

10 L = ∥st+1 − ŝt+1∥22 + ∥rt − r̂t∥22
11 Update θ and ϕ with L+ λ∥G∥p
12 Update π with the SAC algorithm

When addressing distributionally robust problems in RMDPs, the worst-case is typically de-

fined within a prescribed uncertainty set in a clear and implementation-friendly manner, allowing

for iterative or analytical solutions. However, solving RSC-MDPs could be challenging, as the

structured uncertainty set is induced by the causal effect of perturbing the confounder. The pre-

cise characterization of this structured uncertainty set is difficult, since neither the unobserved
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confounder nor the true causal graph of the observable variables is accessible, both of which are

necessary for intervention or counterfactual reasoning. Therefore, we chose to approximate the

causal effect of perturbing the confounder by learning from the data collected during training.

In this section, we propose an intuitive yet effective empirical approach named RSC-SAC to

solve RSC-MDPs, which is outlined in Algorithm 7. We first estimate the effect of perturbing

the distribution P c of the confounder to generate new states (Section 12). Then, we learn the

structural causal model P it to predict the rewards and the next states given the perturbed states

(Section 12). By combining these two components, we construct a data generator capable of

simulating novel transitions (st, at, rt, st+1) from the set of structured uncertainties. To learn the

optimal policy, we construct the data buffer with a mixture of the original data and the generated

data and then use the Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018) to optimize the

policy.

Distribution of confounder

As we have no prior knowledge about confounders, we choose to approximate the effect of

perturbing them without explicitly estimating the distribution P c. We first randomly select a

dimension i from the state st to apply the perturbation and then assign the dimension i of st with

a heuristic rule. We select the value from another sample sk that has the most different value

from st in dimension i and the most similar value to st in the remaining dimensions. Formally,

this process solves the following optimization problem to select the sample k from a batch of K

samples:

sit ← sik, k = argmax
∥sit − sik∥22∑
¬i ∥s¬it − s¬ik ∥22

, k ∈ {1, ..., K}, (4.130)

where sit and s¬it means dimension i of st and other dimensions of st except for i, respectively.

Intuitively, permuting the dimension of two samples breaks the spurious correlation and remains

the most semantic meaning of the state space. However, this permutation sometimes also breaks

the true cause and effect between dimensions, leading to a performance drop. The trade-off

between robustness and performance (Xu et al., 2023) is a long-standing dilemma in the robust

optimization framework, which we will leave to future work.
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Learning of structural causal model

With the perturbed state st, we then learn an SCM to predict the next state and reward con-

sidering the effect of the action on the previous state. This model contains a causal graph to

achieve better generalization to unseen state-action pairs. Specifically, we simultaneously learn

the model parameter and discover the underlying causal graph in a fully differentiable way with

(ŝt+1, r̂t) ∼ Pθ(st, at,Gϕ), where θ is the parameter of the neural network of the dynamic model

and ϕ ∈ R(n+dA)×(n+1) is the parameter that represents the causal graph G between {st, at} and

{st+1, rt}. This graph is represented by a binary adjacency matrix G, where 1/0 means the

existence/absence of an edge. Pθ has an encoder-decoder structure with matrix G as an inter-

mediate linear transformation. The encoder takes in the state and action and outputs features

fe ∈ R(n+dA)×df for each dimension, where df is the dimension of the feature. The causal

graph is then multiplied to generate the feature for the decoder fd = fTe G ∈ Rdf×(n+1). The

decoder takes in fd and outputs the next state and reward. The detailed architecture of this causal

transition model can be found in Appendix 12.

The objective of training this model consists of two parts, one is the supervision signal from

collected data ∥st+1 − ŝt+1∥22 + ∥rt − r̂t∥22, and the other is a penalty term λ∥G∥p with weight

λ to encourage the sparsity of the matrix G. The penalty is important to break the spurious

correlation between dimensions of the state, since it forces the model to eliminate unnecessary

inputs for prediction.

Architecture of the structural causal model

We plot the architecture of the structural causal model we used in our method in Figure 4.22. In

normal neural networks, the input is treated as a whole to pass through linear layers or convo-

lution layers. However, this structure blends all the information in the input, making the causal

graph useless to separate cause and effect. Thus, in our model, we design an encoder that is

shared across all dimensions of the input. Since different dimensions could have exactly the

same values, we add a learnable position embedding to the input of the encoder. In summary, the

input dimension of the encoder is 1+dpos, where dpos is the dimension of the position embedding.

After using the encoder, we obtain a set of independent features for each dimension of the
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Figure 4.22: Model architecture of the structural causal model. Encoder, Decoder, position

embedding, and Causal Graph are learnable during the training stage.

input. We now multiply the features with a learnable binary causal graph G. The element (i, j)

of the graph is sampled from a Gumbel-Softmax distribution with parameter ϕi,j to ensure the

loss function is differentiable w.r.t. ϕ.

Multiplication of the causal graph and the input feature creates a linear combination of the

input feature with respect to the causal graph. The obtained features are then passed through a

decoder to predict the next state and reward. Again, the decoder is shared across all dimensions

to avoid information leaking between dimensions. Position embedding is included in the input

of the decoder and the output dimension of the decoder is 1.

4.3.5 Experiments and Analysis

In this section, we first provide a benchmark consisting of eight environments with spurious

correlations, which may be of independent interest to robust RL. Then we evaluate the proposed

algorithm RSC-SAC with comparisons to previous robust algorithms in RL.

Tasks with spurious correlation

To the best of our knowledge, no existing benchmark addresses the issues of spurious correlation

in the RL state space. To bridge the gap, we designed a benchmark consisting of eight novel

tasks in the self-driving and manipulation domains using the Carla (Dosovitskiy et al., 2017)
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Figure 4.23: Illustration of tasks in the Carla simulator.

and Robosuite (Zhu et al., 2020) platforms (shown in Figure 4.23 and Figure 4.24). Tasks are

designed to include spurious correlations in terms of human common sense, which is ubiquitous

in decision-making applications and could cause safety issues. We categorize the tasks into

distraction correlation and composition correlation according to the type of spurious correlation.

We specify these two types of correlation below and also introduce the descriptions of the tasks.

• Distraction correlation is between task-relevant and task-irrelevant portions of the state.

The task-irrelevant part could distract the policy model from learning important features and

lead to a performance drop. A typical method to avoid distraction is background augmen-

tation (Laskin et al., 2020; Yarats et al., 2021). We design four tasks with this category of

correlation, i.e., Lift, Wipe, Brightness, and CarType.

• Composition correlation is between two task-relevant portions of the state. This correlation

usually exists in compositional generalization, where states are recomposed to form novel

tasks during testing. Typical examples are multi-task RL (Jiang et al., 2022; Lu et al., 2021)

and hierarchical RL (Le et al., 2018; Yoo et al., 2022). We design four tasks with this

category of correlation, i.e., Stack, Door, Behavior, and Crossing.

We designed four self-driving tasks in the Carla simulator (Dosovitskiy et al., 2017) and four
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Figure 4.24: Illustration of tasks in the Robosuite simulator.

manipulation tasks on the Robosuite platform (Zhu et al., 2020). All of these realistic tasks

contain strong spurious correlations that are explicitly observed in humans. We provide detailed

descriptions of all of these environments in the following.

Brightness. The nominal environments are shown in the 1th column of Figure 4.23, where

the brightness and the traffic density are correlated. When the ego vehicle drives during the day,

there are many surrounding vehicles (first row). When the ego vehicle drives in the evening,

there is no surrounding vehicle (second row). The shifted environment changes the brightness

and traffic density in the nominal environment, that is, many surrounding vehicles in the evening

and no surrounding vehicles in the day.

Behavior. The nominal environments are shown in the 2nd column of Figure 4.23, where

the other vehicle has aggressive driving behavior. When the ego vehicle is in front of the other

vehicle, the other vehicle always accelerates and overtakes the ego vehicle in the left lane. When

the ego vehicle is behind the other vehicle, the other vehicle will always accelerate. In the shifted

environment, the behavior of the other vehicle is conservative, i.e., the other vehicle always

decelerates to block the ego vehicle.

Crossing. The nominal environments are shown in the 3rd column of Figure 4.23, where the
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pedestrian follows the traffic rule and only crosses the road when the traffic light is green. In

the shifted environment, the pedestrian disobeys the traffic rules and crosses the road when the

traffic light is red.

CarType. The nominal environments are shown in the 4th column of Figure 4.23, where the

type of vehicle and the speed of the vehicle are correlated. When the vehicle is a truck, the speed

is low and when the vehicle is a motorcycle, the speed is high. In the shifted environment, the

truck drives very fast and the motorcycle drives very slow.

Lift. The nominal environments are shown in the 1th column of Figure 4.24, where the

position of the cube and the color of the cube are correlated. When the cube is in the left part of

the table, the color of the cube is green, when the cube is in the right part of the table, the color of

the cube is red. The shifted environment swaps the color and position of the cube in the nominal

environment, i.e., the cube is green when it is in the right part and the cube is red when it is in

the left part.

Stack. The nominal environments are shown in the 2nd column of Figure 4.24, where the

position of the red cube and green plate are correlated. When the cube is in the left part of the

table, the plate is also in the left part; when the cube is in the right part of the table, the plate is

also in the right part. In the shifted environment, the relative position of the cube and the plate

changes, i.e., When the cube is in the left part of the table, the plate is in the right part; when the

cube is in the right part of the table, the plate is in the left part.

Wipe. The nominal environments are shown in the 3rd column of Figure 4.24, where the

shape of the dirty region is correlated with the position of the cube. When the dirty region is

diagonal, the cube is on the right-hand side of the robot arm. When the dirty region is anti-

diagonal, the cube is on the left-hand side of the robot arm. In the shifted environment, the

correlation changes, i.e., when the dirty region is diagonal, the cube is on the left-hand side of

the robot arm; when the dirty region is anti-diagonal, the cube is on the right-hand side of the

robot arm.

Door. The nominal environments are shown in the 4th column of Figure 4.24, where the

height of the handle and the position of the door are correlated. When the door is closed to the

robot arm, the handle is in a low position. When the door is far from the robot arm, the handle
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Table 4.8: Testing reward on shifted environments. Bold font means the best reward.

Method Brightness Behavior Crossing CarType Lift Stack Wipe Door

SAC 0.56±0.13 0.13±0.03 0.81±0.13 0.63±0.14 0.58±0.13 0.26±0.12 0.16±0.20 0.08±0.07
RMDP-G 0.55±0.15 0.16±0.04 0.47±0.13 0.53±0.16 0.31±0.08 0.33±0.15 0.06±0.17 0.07±0.03
RMDP-U 0.54±0.19 0.13±0.05 0.60±0.15 0.39±0.13 0.51±0.17 0.23±0.11 0.06±0.17 0.10±0.13
MoCoDA 0.50±0.14 0.16±0.05 0.22±0.14 0.23±0.12 0.46±0.14 0.29±0.11 0.01±0.24 0.09±0.14
ATLA 0.48±0.11 0.14±0.03 0.61±0.14 0.52±0.14 0.61±0.18 0.21±0.12 0.29±0.18 0.28±0.19
DBC 0.52±0.18 0.16±0.03 0.68±0.12 0.45±0.10 0.12±0.02 0.03±0.02 0.19±0.35 0.01±0.01
Active 0.47±0.14 0.14±0.03 0.83±0.09 0.77±0.14 0.35±0.09 0.24±0.12 0.17±0.17 0.05±0.02

RSC-SAC 0.99±0.11 1.02±0.09 1.04±0.02 1.03±0.02 0.98±0.04 0.77±0.20 0.85±0.12 0.61±0.17

is in a high position. In the shifted environment, the correlation changes, i.e., when the door is

closed to the robot arm, the handle is in a high position; when the door is far from the robot arm,

the handle is in a low position.

Baselines

Robustness in RL has been explored in terms of various uncertainty sets over state, action, or

transition kernels. Regarding this, we use a non-robust RL and four representative algorithms

of robust RL as baselines, all of which are implemented on top of the SAC (Haarnoja et al.,

2018) algorithm. Non-robust RL (SAC): This serves as a basic baseline without considering

any robustness during training; Solving robust MDP: We generate samples to cover the un-

certainty set over the state space by adding perturbation around the nominal states that follows

two distributions, i.e., uniform distribution (RMDP-U) and Gaussian distribution (RMDP-G).

Solving SA-MDP: We compare ATLA (Zhang et al., 2021), a powerful algorithm that generates

adversarial states using an optimal adversary within the uncertainty set. Invariant feature learn-

ing: We choose DBC (Zhang et al., 2020b) that learns invariant features using the bi-simulation

metric (Larsen and Skou, 1989) and (Gupta et al., 2023) (Active) that actively sample uncer-

tain transitions to reduce causal confusion. Counterfactual data augmentation: We select

MoCoDA (Pitis et al., 2022), which identifies local causality to change components and generate

counterfactual samples to cover the targeted uncertainty set. We adapt this algorithm using an

approximate causal graph rather than the true causal graph.
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Figure 4.25: The first row shows the testing reward on the nominal environments, while the

second row shows the testing reward on the shifted environments.

Results and Analysis

To comprehensively evaluate the performance of the proposed method RSC-SAC, we perform

experiments to answer the following questions: Q1. Can RSC-SAC eliminate the harmful effect

of spurious correlation in learned policy? Q2. Does the robustness of RSC-SAC only come from

the sparsity of the model? Q3. How does RSC-SAC perform in nominal environments compared

to non-robust algorithms? Q4. Which module is critical in our empirical algorithm? Q5. Is

RSC-SAC robust to other types of uncertainty and perturbation of the model? Q6. How does

RSC-SAC balance the trade-off between performance and robustness? We analyze the results

and answer these questions below.

R1. RSC-SAC is robust against spurious correlation. The results of our proposed method

testing with comparisons to baselines are presented in Table 4.8, where the rewards are nor-

malized by the reward for the episode of SAC in the nominal environment. The results reveal

that RSC-SAC significantly outperforms other baselines in shifted test environments, exhibiting

performance comparable to that of vanilla SAC in the nominal environment in 5 out of 8 tasks.
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Figure 4.26: Comparison between SAC-Sparse and our method. α is the regularization weight.

An interesting and even surprising finding, as shown in Table 4.8, is that although RMDP-G,

RMDP-U, and ATLA are trained desired to be robust against small perturbations, their perfor-

mance tends to drop more than non-robust SAC in some tasks. This indicates that using the

samples generated from the traditional robust algorithms could harm the policy performance

when the test environment is outside of the prescribed uncertainty set considered in the robust

algorithms.

R2. Sparsity of the model is only one reason for the robustness of RSC-SAC. As the existing

literature shows (Park et al., 2021), sparsity regularization benefits the elimination of spurious

correlation and causal confusion. Therefore, we compare our method with a sparse version of

SAC (SAC-Sparse): we add an additional penalty α|W |1 during optimization, where W is the

parameter of the first linear layer of the policy and value networks and α is the weight. The

results of both Distraction and Composition are shown in Figure 4.26. We have two important

findings based on the results: (1) The sparsity improves the robustness of SAC in the setting of

distraction spurious correlation, which is consistent with the findings in (Park et al., 2021). (2)

The sparsity does not help with the composition type of spurious correlation, which indicates that

purely using sparsity regularization cannot explain the improvement of our RSC-SAC. In fact,

the semantic perturbation in our method plays an important role in enhancing the composition
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Table 4.9: Testing reward on nominal environments. Underline means the reward is over 0.9.

Method Brightness Behavior Crossing CarType Lift Stack Wipe Door

SAC 1.00±0.09 1.00±0.08 1.00±0.02 1.00±0.03 1.00±0.03 1.00±0.09 1.00±0.12 1.00±0.03
RMDP-G 1.04±0.09 1.00±0.11 0.78±0.05 0.79±0.05 0.92±0.07 0.86±0.14 0.99±0.13 0.99±0.06
RMDP-U 1.02±0.09 1.04±0.07 0.90±0.03 0.88±0.03 0.97±0.05 0.92±0.12 0.97±0.14 0.88±0.31
MoCoDA 0.65±0.17 0.78±0.15 0.57±0.07 0.55±0.13 0.79±0.11 0.72±0.08 0.69±0.13 0.41±0.22
ATLA 0.99±0.11 0.98±0.11 0.89±0.05 0.88±0.04 0.94±0.08 0.88±0.10 0.96±0.12 0.97±0.05
DBC 0.75±0.12 0.78±0.10 0.85±0.08 0.86±0.06 0.27±0.04 0.12±0.08 0.31±0.21 0.01±0.01
Active 1.02±0.10 1.08±0.06 1.00±0.02 1.00±0.02 0.99±0.03 0.90±0.12 0.93±0.20 0.99±0.05

RSC-SAC 0.92±0.31 1.06±0.07 0.96±0.03 0.96±0.03 0.96±0.05 1.04±0.08 0.92±0.14 0.98±0.05

generalization.

R3. RSC-SAC maintains a high performance in nominal environments. Previous litera-

ture (Xu et al., 2023) finds that there usually exists a trade-off between the performance in the

nominal environment and the robustness against uncertainty. To evaluate the performance of

RSC-SAC in the nominal environment, we perform experiments and summarize the results in

Table 4.9, which shows that RSC-SAC still performs well in the training environment. Further-

more, the training curves are shown in Figure 4.25, showing that RSC-SAC achieves similar

rewards compared to non-robust SAC, although converges slower than it.

Table 4.10: Influence of modules

Method Lift Behavior Crossing

w/o Gϕ 0.79±0.15 0.51±0.24 0.87±0.10

w/o Pθ 0.75±0.13 0.41±0.28 0.89±0.08

w/o P c 0.90±0.09 0.66±0.21 0.96±0.04

Full model 0.98±0.04 1.02±0.09 1.04±0.02

R4. Both the confounder distribution and the structural causal model are critical. To assess

the impact of each module in our algorithm, we perform three additional ablation studies (in

Table 4.10), where we remove the causal graph Gϕ, the transition model Pθ, and the confounder

distribution P c, respectively. The results demonstrate that the learnable causal graph Gϕ is criti-

cal to the performance that improves the prediction of the next state and rewards, thus facilitating

the generation of high-quality next states with the current perturbed states. The transition model

without Gϕ may still retain numerous spurious correlations, resulting in a performance drop
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Figure 4.27: Performance-robustness tradeoff with different augmentation ratio β.

similar to that without Pθ, which does not alter the next state and reward. In the third row of

Table 4.10, the performance drop indicates that the confounder P c also plays a crucial role in

preserving semantic meaning and avoiding distractions from policy training.

Table 4.11: Random purterbuation

Method Lift-0 Lift-0.01 Lift-0.1

SAC 1.00±0.03 0.77±0.13 0.46±0.23

RMDP-0.01 0.97±0.05 0.96±0.06 0.51±0.21

RMDP-0.1 0.85±0.12 0.82±0.09 0.39±0.15

RSC-SAC 0.96±0.05 0.94±0.06 0.44±0.18

R5. RSC-SAC is also robust to random perturbation. The final investigation aims to assess

the generalizability of our method to cope with random perturbation that is widely considered in

robust RL (RMDPs). Toward this, we evaluated the proposed algorithm in the test environments

added with random noise under the Gaussian distribution with two varying scales in the Lift en-

vironment. In Table 4.11, Lift-0 indicates the nominal training environment, while Lift-0.01 and

Lift-0.1 represent the environments perturbed by Gaussian noise with standard derivation 0.01

and 0.1, respectively. The results indicate that our RSC-SAC achieves comparable robustness

compared to RMDP-0.01 in both large and small perturbation settings and outperforms RMDP

methods in the nominal training environment.

R6. RSC-SAC maintains good performance and robustness for a wide range of β. As

shown in Figure 4.27, the proposed RSC-SAC performs well in both nominal and shifted set-

tings, maintaining good performance in the nominal setting and achieving robustness for a wide
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range of (20%-70%). When the proportion of perturbed data is very small (1%), RSC-SAC al-

most achieves the same results as vanilla SAC in nominal settings, and there is no robustness

in shifted settings. As it increases (considering more robustness), the performance of RSC-SAC

in the nominal setting gradually gets worse, while reversely it gets better in the shifted settings

(more robust). However, when the ratio is too large (> 80%), the performance of RSC-SAC in

both settings degrades a lot, as the policy is too conservative and, therefore, fails in all environ-

ments.

Example of Generated Data by Perturbations

We show an example of generated trajectories in the Lift task to demonstrate the reason why

our method obtains robustness against spurious correlation. In Figure 4.28 (a), we show the

collected trajectories from the data buffer. Since the green block is always generated on the left

side of the table, the trajectories of the green block appear mainly on the left side of the table. In

Figure 4.28 (b), we generate new trajectories from a trained transition model and observe that the

distribution of trajectories follows the collected data. In Figure 4.28 (c), we directly perturbed

the dimensions of the state and used the same transition model to generate new trajectories. We

find that the generated trajectories blend the color, but fail to maintain the spatial distribution of

the original data. In Figure 4.28 (d), we use the causal-based transition model to generate new

trajectories and we find that the results not only follow the spatial distribution but also blend the

color.

The results shown in Figure 4.28 illustrate that the data generated by our method eliminate

the spurious correlation between the color and position of the block, therefore allowing the policy

model to generalize to the shifted environment.

4.4 Summary

In this chapter, we discuss three of my previous works that use causal graphs to improve the

generation process (Ding et al., 2021c, 2022a, 2024). In the first work, we assume that the causal

graph is known by extracting human knowledge. In the second work, we propose a framework
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Figure 4.28: The generated transition data from different perturbation methods. (a) Trajectories

collected from the policy interact with the nominal environment. (b) Generated trajectories with-

out any perturbation. (c) Generated trajectories with perturbation but without the causal graph.

(d) Generated trajectories with perturbation and with the causal graph.

for simultaneously discovering the causal graph and using the graph for generation. The causal

graphs embed the interactive knowledge about how one agent influences another, providing two

main advantages: (1) making the model learn features that are relevant to the task and ignore

irrelevant features, and (2) making the model generalize to unseen situations. In the third work,

we further investigate how to use the generative model to break the spurious correlation in state

space, which provides a way to use causal discovery to deal with safety-critical scenarios.

One limitation of most of the current causality work still focuses on the cause-and-effect in

a short temporal duration, that is, the influence of the last time step on the next time step. The

extension of current work to a longer temporal duration to analyze the causality between events

will generalize the usage of causality in scenario generation and the digital twin.
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Chapter 5

Conclusion

In my Ph.D. research, I proposed several safety-critical scenario generation methods and catego-

rized them into three types. In this chapter, I summarize the important message that the readers

can take away, including why safety-critical scenario generation is important, how to select gen-

eration algorithms from so many existing methods, and what are future directions to improve

existing algorithms.

5.1 Combination of Data, Adversary, and Knowledge

Although I provide a taxonomy to categorize my previous work according to the source of the

generation, it is still unclear how to select a specific algorithm according to different situations.

The most valuable takeaway from this categorization is that combining information is important

for generating critical scenarios because different sources improve different perspectives of gen-

eration. Specifically, structured data can be used as prior regularization, downstream tasks can

be used as feedback, and human knowledge can provide additional constraints. For example, the

following combinations can be used as typical solutions:

• Data-driven + Adversarial generation. If the goal is to broadly evaluate your system

under diverse scenarios to discover the weakness, combining multi-modal density models

and adversarial training is preferred. Randomly sample generative models and search for

safety-critical scenarios with adversarial generation.
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Figure 5.1: Combine as much information as possible to build a critical digital twin.

• Data-driven + Knowledge-based generation. When there are specific requirements that

can be converted into constraints, using constraint optimization to manipulate existing sce-

narios (e.g., trajectories) is preferred. In that case, the scenarios will concentrate on one

single cluster with low diversity, which is helpful if the objective is to test the driving

system on specific scenarios.

• Adversarial + Knowledge-based generation If we already have rules that can design

safety-critical scenarios but also want to increase the diversity of generated scenarios by

automatically learning the parameters, then the combination of adversarial generation and

the rule-based method is preferred.

Related tools for the combination. We want to emphasize that traffic scenarios are created

by the relations of objects and physical laws, rather than being designed by the human mind.

Relying solely on neural networks or optimization methods is not the ultimate solution to gener-

ate realistic and critical scenarios. Instead, the model should take advantage of as much external
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knowledge and rules as possible to make the scenarios generated interpretable and satisfy the

objective. For example, the representation of the scenario is crucial and usually determines the

quality of the generation. A representation that naturally embeds rules and laws within a structure

could be easily optimized by considering the complex relationship between objects. Addition-

ally, correctly injecting the distribution of real-world data is important to ensure the reality of the

generated scenarios. Using Offline RL (Prudencio et al., 2022) and imitation learning could be a

potential direction to achieve this goal.

5.2 Future Directions of Critical Digital Twins

Use scenarios to increase robustness and safety Another aspect worth investigating is to effec-

tively use the generated scenarios to improve robustness and safety. The most intuitive way is

to train the autonomous system against generated safety-critical scenarios under the adversarial

training framework. However, adversarial scenarios usually represent the worst cases, therefore,

learning to a robust yet conservative system. It is not easy to select the difficulty and category

of scenarios due to the problems of imbalanced data and over-fitting. These problems bridge the

topic discussed in this survey to other areas, such as robust optimization (Beyer and Sendhoff,

2007) and distributional robust optimization (Rahimian and Mehrotra, 2019), which have a broad

literature to explore.

Use scenarios to improve generalization. In addition to increasing robustness, generated

scenarios could also be used to improve the generalization of AVs. For example, gradually

training AVs with increasing risk levels under the curriculum learning (Soviany et al., 2021)

framework may help systems easily generalize to more types of safety-critical scenarios. A

recent survey (Kirk et al., 2021) that investigates the generalization problem in RL emphasizes

the importance of environment generation to increase the similarity between the training and

testing domains. This direction extends the scenario generation from safety to broader views that

require the generation of a goal-conditioned environment.

Knowledge-guided reasoning of safety. In my previous work, I mainly focused on safety-

critical scenario generation, where the definition of safety is important throughout the frame-
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Figure 5.2: Reasoning in the data flywheel.

work. According to a standard criterion for automotive (Heires, 2008), safety is the absence of

unreasonable risk due to a hazard caused by functional insufficiencies. However, the definition

of an unreasonable risk could be quite difficult and varies case by case. To make autonomous

systems work in human society, it is important to align the definition of unreasonable risk with

human value, which requires human knowledge. Therefore, it will be an important direction

to explore the reasoning capability to discover and categorize risk using powerful tools such as

Large Language Models.

The importance of reasoning in the whole data flywheel. In recent years, the concept of

data flywheel has attracted more and more attention, as data collection in the physical world could

be difficult, but the development of large foundation models requires a large amount of data. The

data flywheel is an approach in data science that emphasizes the self-reinforcing effects of col-

lecting and using data, which requires less energy to maintain its speed or even accelerate. As

shown in Figure 5.2, we separate the entire data flywheel into three components: data acquisi-

tion, data representation, and data consumption. From a high-level point of view, all of these

components require reasoning to achieve better performance and greater efficiency. In my Ph.D.
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research, I explored the first two components using scenario generation and causal structure dis-

covery, where the first branch investigates the reasoning about the weakness of the model, and

the second branch investigates the causality of the data. In the future, I am very interested in

the last component, which requires the reasoning of learning progress. For example, the process

of using data for parameter-efficient training, fine-tuning, and in-context learning. Finally, crit-

ical digital twins will be built upon the data flywheel to enable the prediction and diagnosis of

physical systems, providing decision-making guidance to broad applications.
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Ahmed, O., Träuble, F., Goyal, A., Neitz, A., Bengio, Y., Schölkopf, B., Wüthrich, M., and
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